These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 15137166)
1. Phosphate and arsenate retention in sediments of the Anllóns river (northwest Spain). Rubinos D; Barral MT; Ruíz B; Ruíz M; Rial ME; Alvarez M; Díaz-Fierros F Water Sci Technol; 2003; 48(10):159-66. PubMed ID: 15137166 [TBL] [Abstract][Full Text] [Related]
2. Phosphorus sorption and fraction characteristics in the upper, middle and low reach sediments of the Daliao river systems, China. Lin C; Wang Z; He M; Li Y; Liu R; Yang Z J Hazard Mater; 2009 Oct; 170(1):278-85. PubMed ID: 19477067 [TBL] [Abstract][Full Text] [Related]
3. Effect of organic carbon and mineral surface on the pyrene sorption and distribution in Yangtze River sediments. Zhang J; Séquaris JM; Narres HD; Vereecken H; Klumpp E Chemosphere; 2010 Sep; 80(11):1321-7. PubMed ID: 20619874 [TBL] [Abstract][Full Text] [Related]
4. Interactions of land use and dynamic river conditions on sorption equilibria between benthic sediments and river soluble reactive phosphorus concentrations. Stutter MI; Lumsdon DG Water Res; 2008 Oct; 42(16):4249-60. PubMed ID: 18775552 [TBL] [Abstract][Full Text] [Related]
5. Sorption and transport of iodine species in sediments from the Savannah River and Hanford Sites. Hu Q; Zhao P; Moran JE; Seaman JC J Contam Hydrol; 2005 Jul; 78(3):185-205. PubMed ID: 16019109 [TBL] [Abstract][Full Text] [Related]
6. Microcystin concentrations in the Nile River sediments and removal of microcystin-LR by sediments during batch experiments. Mohamed ZA; El-Sharouny HM; Ali WS Arch Environ Contam Toxicol; 2007 May; 52(4):489-95. PubMed ID: 17380237 [TBL] [Abstract][Full Text] [Related]
7. Hydrochemical processes controlling arsenic and heavy metal contamination in the Elqui river system (Chile). Dittmar T Sci Total Environ; 2004 Jun; 325(1-3):193-207. PubMed ID: 15144789 [TBL] [Abstract][Full Text] [Related]
8. [Phosphate sorption characteristics onto sediments in the middle and lower reaches of the Yellow River]. Wang XL; Pan G; Bao HY; Zhang XW; Chen H; Guo BS Huan Jing Ke Xue; 2008 Aug; 29(8):2137-42. PubMed ID: 18839562 [TBL] [Abstract][Full Text] [Related]
9. Arsenic speciation in river and estuarine waters from southwest Spain. Sánchez-Rodas D; Luis Gómez-Ariza J; Giráldez I; Velasco A; Morales E Sci Total Environ; 2005 Jun; 345(1-3):207-17. PubMed ID: 15919540 [TBL] [Abstract][Full Text] [Related]
10. The speciation and bioavailability of mercury in sediments of Haihe River, China. Shi JB; Liang LN; Jiang GB; Jin XL Environ Int; 2005 Apr; 31(3):357-65. PubMed ID: 15734189 [TBL] [Abstract][Full Text] [Related]
11. [Characteristics of phosphorus sorption on Yellow River sediments from Inner Mongolia reach]. Zhang XW; Pan G; Wang XL; Chen H; Guo BS; Bao HY Huan Jing Ke Xue; 2009 Jan; 30(1):172-7. PubMed ID: 19353877 [TBL] [Abstract][Full Text] [Related]
12. Mineralogical and geochemical controls of arsenic speciation and mobility under different redox conditions in soil, sediment and water at the Mokrsko-West gold deposit, Czech Republic. Drahota P; Rohovec J; Filippi M; Mihaljevic M; Rychlovský P; Cervený V; Pertold Z Sci Total Environ; 2009 May; 407(10):3372-84. PubMed ID: 19217143 [TBL] [Abstract][Full Text] [Related]
13. Variations in stream water and sediment phosphorus among select Ozark catchments. Haggard BE; Smith DR; Brye KR J Environ Qual; 2007; 36(6):1725-34. PubMed ID: 17940273 [TBL] [Abstract][Full Text] [Related]
14. Phosphorus fractions and phosphate sorption characteristics in relation to the sediment compositions of shallow lakes in the middle and lower reaches of Yangtze River region, China. Wang S; Jin X; Pang Y; Zhao H; Zhou X; Wu F J Colloid Interface Sci; 2005 Sep; 289(2):339-46. PubMed ID: 16112221 [TBL] [Abstract][Full Text] [Related]
15. Sorption-desorption behavior of polycyclic aromatic hydrocarbons in upstream and downstream river sediments. Oren A; Chefetz B Chemosphere; 2005 Sep; 61(1):19-29. PubMed ID: 16157166 [TBL] [Abstract][Full Text] [Related]
16. Sorption and redox processes controlling arsenic fate and transport in a stream impacted by acid mine drainage. Casiot C; Lebrun S; Morin G; Bruneel O; Personné JC; Elbaz-Poulichet F Sci Total Environ; 2005 Jul; 347(1-3):122-30. PubMed ID: 16084973 [TBL] [Abstract][Full Text] [Related]
17. Fate of beta blockers in aquatic-sediment systems: sorption and biotransformation. Ramil M; El Aref T; Fink G; Scheurer M; Ternes TA Environ Sci Technol; 2010 Feb; 44(3):962-70. PubMed ID: 20030338 [TBL] [Abstract][Full Text] [Related]
18. A retrospective analysis of trace metals, C, N and diatom remnants in sediments from the Mississippi River delta shelf. Turner RE; Milan CS; Rabalais NN Mar Pollut Bull; 2004 Oct; 49(7-8):548-56. PubMed ID: 15476833 [TBL] [Abstract][Full Text] [Related]
19. Mercury in river water and sediments in some rivers near Dunkwa-On-Offin, an Alluvial Goldmine, Ghana. Golow AA; Mingle LC Bull Environ Contam Toxicol; 2003 Feb; 70(2):379-84. PubMed ID: 12545374 [No Abstract] [Full Text] [Related]
20. Phosphorus sorption by sediments in a southeastern coastal plain in-stream wetland. Novak JM; Watts DW J Environ Qual; 2006; 35(6):1975-82. PubMed ID: 17071865 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]