BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 15137166)

  • 1. Phosphate and arsenate retention in sediments of the Anllóns river (northwest Spain).
    Rubinos D; Barral MT; Ruíz B; Ruíz M; Rial ME; Alvarez M; Díaz-Fierros F
    Water Sci Technol; 2003; 48(10):159-66. PubMed ID: 15137166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphorus sorption and fraction characteristics in the upper, middle and low reach sediments of the Daliao river systems, China.
    Lin C; Wang Z; He M; Li Y; Liu R; Yang Z
    J Hazard Mater; 2009 Oct; 170(1):278-85. PubMed ID: 19477067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of organic carbon and mineral surface on the pyrene sorption and distribution in Yangtze River sediments.
    Zhang J; Séquaris JM; Narres HD; Vereecken H; Klumpp E
    Chemosphere; 2010 Sep; 80(11):1321-7. PubMed ID: 20619874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions of land use and dynamic river conditions on sorption equilibria between benthic sediments and river soluble reactive phosphorus concentrations.
    Stutter MI; Lumsdon DG
    Water Res; 2008 Oct; 42(16):4249-60. PubMed ID: 18775552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sorption and transport of iodine species in sediments from the Savannah River and Hanford Sites.
    Hu Q; Zhao P; Moran JE; Seaman JC
    J Contam Hydrol; 2005 Jul; 78(3):185-205. PubMed ID: 16019109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microcystin concentrations in the Nile River sediments and removal of microcystin-LR by sediments during batch experiments.
    Mohamed ZA; El-Sharouny HM; Ali WS
    Arch Environ Contam Toxicol; 2007 May; 52(4):489-95. PubMed ID: 17380237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrochemical processes controlling arsenic and heavy metal contamination in the Elqui river system (Chile).
    Dittmar T
    Sci Total Environ; 2004 Jun; 325(1-3):193-207. PubMed ID: 15144789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Phosphate sorption characteristics onto sediments in the middle and lower reaches of the Yellow River].
    Wang XL; Pan G; Bao HY; Zhang XW; Chen H; Guo BS
    Huan Jing Ke Xue; 2008 Aug; 29(8):2137-42. PubMed ID: 18839562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arsenic speciation in river and estuarine waters from southwest Spain.
    Sánchez-Rodas D; Luis Gómez-Ariza J; Giráldez I; Velasco A; Morales E
    Sci Total Environ; 2005 Jun; 345(1-3):207-17. PubMed ID: 15919540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The speciation and bioavailability of mercury in sediments of Haihe River, China.
    Shi JB; Liang LN; Jiang GB; Jin XL
    Environ Int; 2005 Apr; 31(3):357-65. PubMed ID: 15734189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Characteristics of phosphorus sorption on Yellow River sediments from Inner Mongolia reach].
    Zhang XW; Pan G; Wang XL; Chen H; Guo BS; Bao HY
    Huan Jing Ke Xue; 2009 Jan; 30(1):172-7. PubMed ID: 19353877
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mineralogical and geochemical controls of arsenic speciation and mobility under different redox conditions in soil, sediment and water at the Mokrsko-West gold deposit, Czech Republic.
    Drahota P; Rohovec J; Filippi M; Mihaljevic M; Rychlovský P; Cervený V; Pertold Z
    Sci Total Environ; 2009 May; 407(10):3372-84. PubMed ID: 19217143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variations in stream water and sediment phosphorus among select Ozark catchments.
    Haggard BE; Smith DR; Brye KR
    J Environ Qual; 2007; 36(6):1725-34. PubMed ID: 17940273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphorus fractions and phosphate sorption characteristics in relation to the sediment compositions of shallow lakes in the middle and lower reaches of Yangtze River region, China.
    Wang S; Jin X; Pang Y; Zhao H; Zhou X; Wu F
    J Colloid Interface Sci; 2005 Sep; 289(2):339-46. PubMed ID: 16112221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sorption-desorption behavior of polycyclic aromatic hydrocarbons in upstream and downstream river sediments.
    Oren A; Chefetz B
    Chemosphere; 2005 Sep; 61(1):19-29. PubMed ID: 16157166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sorption and redox processes controlling arsenic fate and transport in a stream impacted by acid mine drainage.
    Casiot C; Lebrun S; Morin G; Bruneel O; Personné JC; Elbaz-Poulichet F
    Sci Total Environ; 2005 Jul; 347(1-3):122-30. PubMed ID: 16084973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fate of beta blockers in aquatic-sediment systems: sorption and biotransformation.
    Ramil M; El Aref T; Fink G; Scheurer M; Ternes TA
    Environ Sci Technol; 2010 Feb; 44(3):962-70. PubMed ID: 20030338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A retrospective analysis of trace metals, C, N and diatom remnants in sediments from the Mississippi River delta shelf.
    Turner RE; Milan CS; Rabalais NN
    Mar Pollut Bull; 2004 Oct; 49(7-8):548-56. PubMed ID: 15476833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mercury in river water and sediments in some rivers near Dunkwa-On-Offin, an Alluvial Goldmine, Ghana.
    Golow AA; Mingle LC
    Bull Environ Contam Toxicol; 2003 Feb; 70(2):379-84. PubMed ID: 12545374
    [No Abstract]   [Full Text] [Related]  

  • 20. Phosphorus sorption by sediments in a southeastern coastal plain in-stream wetland.
    Novak JM; Watts DW
    J Environ Qual; 2006; 35(6):1975-82. PubMed ID: 17071865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.