These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 15137171)

  • 61. Fragmentation and thermal risks from climate change interact to affect persistence of native trout in the Colorado River basin.
    Roberts JJ; Fausch KD; Peterson DP; Hooten MB
    Glob Chang Biol; 2013 May; 19(5):1383-98. PubMed ID: 23505098
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Each life stage matters: the importance of assessing the response to climate change over the complete life cycle in butterflies.
    Radchuk V; Turlure C; Schtickzelle N
    J Anim Ecol; 2013 Jan; 82(1):275-85. PubMed ID: 22924795
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Assessment of climate change effects on Canada's National Park system.
    Suffling R; Scott D
    Environ Monit Assess; 2002 Mar; 74(2):117-39. PubMed ID: 11878639
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Assessing climate change impacts on wetlands in a flow regulated catchment: A case study in the Macquarie Marshes, Australia.
    Fu B; Pollino CA; Cuddy SM; Andrews F
    J Environ Manage; 2015 Jul; 157():127-38. PubMed ID: 25897507
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Organismal climatology: analyzing environmental variability at scales relevant to physiological stress.
    Helmuth B; Broitman BR; Yamane L; Gilman SE; Mach K; Mislan KA; Denny MW
    J Exp Biol; 2010 Mar; 213(6):995-1003. PubMed ID: 20190124
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Assessment of aquatic habitat effect by artificial change of streambed topography.
    Oh K; Lee J; Rubio CJ; Kim L; Jeong S
    Water Sci Technol; 2010; 62(12):2872-9. PubMed ID: 21123917
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Incorporating long-term trends in water availability in water supply planning.
    Luketina D; Bender M
    Water Sci Technol; 2002; 46(6-7):113-20. PubMed ID: 12380982
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Importance of Natural and Anthropogenic Environmental Factors to Fish Communities of the Fox River in Illinois.
    Schnier S; Cai X; Cao Y
    Environ Manage; 2016 Feb; 57(2):389-411. PubMed ID: 26404430
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Contrasting effects of climate change in continental vs. oceanic environments on population persistence and microevolution of Atlantic salmon.
    Piou C; Prévost E
    Glob Chang Biol; 2013 Mar; 19(3):711-23. PubMed ID: 23504829
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The potential health impacts of climate variability and change for the United States. Executive summary of the report of the health sector of the U.S. National Assessment.
    Patz JA; McGeehin MA; Bernard SM; Ebi KL; Epstein PR; Grambsch A; Gubler DJ; Reiter P; Romieu I; Rose JB; Samet JM; Trtanj J
    J Environ Health; 2001 Sep; 64(2):20-8. PubMed ID: 11544844
    [No Abstract]   [Full Text] [Related]  

  • 71. Socio-economic drivers of freshwater fish declines in a changing climate: a New Zealand perspective.
    Ling N
    J Fish Biol; 2010 Nov; 77(8):1983-92. PubMed ID: 21078101
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A framework for assessing climate change impacts on water and watershed systems.
    Johnson TE; Weaver CP
    Environ Manage; 2009 Jan; 43(1):118-34. PubMed ID: 18830740
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Simulating the effect of climate change on stream temperature in the Trout Lake Watershed, Wisconsin.
    Selbig WR
    Sci Total Environ; 2015 Jul; 521-522():11-8. PubMed ID: 25828407
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Going with the flow: using species-discharge relationships to forecast losses in fish biodiversity.
    Xenopoulos MA; Lodge DM
    Ecology; 2006 Aug; 87(8):1907-14. PubMed ID: 16937627
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Assessing impacts of climate change on habitat suitability of Coregonus ussuriensis and other coldwater fishes in northern China.
    Xing B; Chen H; Chen Q; Zhang Y; Liu Z; Yang Z
    Environ Sci Pollut Res Int; 2019 Nov; 26(33):34058-34066. PubMed ID: 30251041
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Future changes in Yuan River ecohydrology: Individual and cumulative impacts of climates change and cascade hydropower development on runoff and aquatic habitat quality.
    Wen X; Liu Z; Lei X; Lin R; Fang G; Tan Q; Wang C; Tian Y; Quan J
    Sci Total Environ; 2018 Aug; 633():1403-1417. PubMed ID: 29758893
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Utilization of protein expression profiles as indicators of environmental impairment of smallmouth bass (Micropterus dolomieu) from the Shenandoah River, Virginia, USA.
    Ripley J; Iwanowicz L; Blazer V; Foran C
    Environ Toxicol Chem; 2008 Aug; 27(8):1756-67. PubMed ID: 18315392
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Linking Hydroclimate to Fish Phenology and Habitat Use with Ichthyographs.
    Flitcroft RL; Lewis SL; Arismendi I; LovellFord R; Santelmann MV; Safeeq M; Grant G
    PLoS One; 2016; 11(12):e0168831. PubMed ID: 28006825
    [TBL] [Abstract][Full Text] [Related]  

  • 79. General effects of climate change on Arctic fishes and fish populations.
    Reist JD; Wrona FJ; Prowse TD; Power M; Dempson JB; Beamish RJ; King JR; Carmichael TJ; Sawatzky CD
    Ambio; 2006 Nov; 35(7):370-80. PubMed ID: 17256641
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Modeling possible cooling-water intake system impacts on Ohio River fish populations.
    Perry E; Seegert G; Vondruska J; Lohner T; Lewis R
    ScientificWorldJournal; 2002 Apr; 2 Suppl 1():58-80. PubMed ID: 12805979
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.