BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 15137430)

  • 1. Automatic control of external carbon source addition for nitrogen removal in sewage with low C/N ratios.
    Nam HU; Kim YO; Lee JH; Hur SH; Park TJ
    Water Sci Technol; 2004; 49(5-6):245-9. PubMed ID: 15137430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic control strategy for biological nitrogen removal of low C/N wastewater in a sequencing batch reactor.
    Kishida N; Kim JH; Chen M; Tsuneda S; Sasaki H; Sudo R
    Water Sci Technol; 2004; 50(10):45-50. PubMed ID: 15656294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biological nitrogen removal with a real-time control strategy using moving slope changes of pH(mV)- and ORP-time profiles.
    Won SG; Ra CS
    Water Res; 2011 Jan; 45(1):171-8. PubMed ID: 20822790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fuzzy control of nitrogen removal in predenitrification process using ORP.
    Peng Y; Ma Y; Wang S; Wang X
    Water Sci Technol; 2005; 52(12):161-9. PubMed ID: 16477983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated real-time control strategy for nitrogen removal in swine wastewater treatment using sequencing batch reactors.
    Kim JH; Chen M; Kishida N; Sudo R
    Water Res; 2004; 38(14-15):3340-8. PubMed ID: 15276751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of feed characteristics on the organic matter, nitrogen and phosphorus removal in an activated sludge system treating piggery slurry.
    González C; García PA; Muñoz R
    Water Sci Technol; 2009; 60(8):2145-52. PubMed ID: 19844061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitrogen removal in an upflow sludge blanket (USB) reactor combined by aerobic biofiltration systems.
    Jun HB; Park SM; Park JK; Choi CO; Lee JS
    Water Sci Technol; 2004; 49(5-6):191-7. PubMed ID: 15137423
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced nitrogen removal using C/N load adjustment and real-time control strategy in sequencing batch reactors for swine wastewater treatment.
    Chen M; Kim JH; Kishida N; Nishimura O; Sudo R
    Water Sci Technol; 2004; 49(5-6):309-14. PubMed ID: 15137439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive control of the nitrate level in an activated sludge process.
    Ekman M; Samuelsson P; Carlsson B
    Water Sci Technol; 2003; 47(11):137-44. PubMed ID: 12906282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Applying real-time control to enhance the performance of nitrogen removal in CAST system.
    Wang SP; Peng YZ; Wang SY; Gao SY
    J Environ Sci (China); 2005; 17(5):736-9. PubMed ID: 16312994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of control strategy and simulation in anoxic-oxic nitrogen removal process.
    Peng YZ; Wang ZH; Whang SY
    J Environ Sci (China); 2005; 17(3):425-8. PubMed ID: 16083116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrogen removal of high strength wastewater via nitritation/denitritation using a sequencing batch reactor.
    Lai E; Senkpiel S; Solley D; Keller J
    Water Sci Technol; 2004; 50(10):27-33. PubMed ID: 15656292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous removal of organic and strong nitrogen from sewage in a pilot-scale BNR process supplemented with food waste.
    Chae SR; Lee SH; Kim JO; Paik BC; Song YC; Park HS; Shin HS
    Water Sci Technol; 2004; 49(5-6):257-64. PubMed ID: 15137432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of ORP (oxidation-reduction potential) to control oxygen dosing for online sulfide oxidation in anaerobic treatment of high sulfate wastewater.
    Khanal SK; Shang C; Huang JC
    Water Sci Technol; 2003; 47(12):183-9. PubMed ID: 12926687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a real-time control strategy with artificial neural network for automatic control of a continuous-flow sequencing batch reactor.
    Cho BC; Law SL; Chang CN; Yu RF; Yang SJ; Chiou BR
    Water Sci Technol; 2001; 44(1):95-104. PubMed ID: 11496683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time control of oxic phase using pH (mV)-time profile in swine wastewater treatment.
    Ga CH; Ra CS
    J Hazard Mater; 2009 Dec; 172(1):61-7. PubMed ID: 19628333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance of intermittent aeration reactor on NH4-N removal from groundwater resources.
    Khanitchaidecha W; Nakamura T; Sumino T; Kazama F
    Water Sci Technol; 2010; 61(12):3061-9. PubMed ID: 20555202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wastewater nitrogen removal in Sbrs, applying a step-feed strategy: from lab-scale to pilot-plant operation.
    Puig S; Vives MT; Corominas L; Balaguer MD; Colprim J
    Water Sci Technol; 2004; 50(10):89-96. PubMed ID: 15656300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advanced treatment of sewage by pre-coagulation and biological filtration process.
    Hidaka T; Tsuno H; Kishimoto N
    Water Res; 2003 Oct; 37(17):4259-69. PubMed ID: 12946909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitrogen removal during leachate treatment: comparison of simple and sophisticated systems.
    Vasel JL; Jupsin H; Annachhatre AP
    Water Sci Technol; 2004; 50(6):45-52. PubMed ID: 15536989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.