These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
236 related articles for article (PubMed ID: 15137718)
1. Separation of drug traces from water with particular membrane systems. Grote M; Haciosmanoglu B; Bataineh M; Nolte J J Environ Sci Health A Tox Hazard Subst Environ Eng; 2004; 39(4):1039-53. PubMed ID: 15137718 [TBL] [Abstract][Full Text] [Related]
2. Ultrafiltration behavior of selected pharmaceuticals on natural and synthetic membranes in the presence of humic-rich hydrocolloids. Burba P; Geltenpoth H; Nolte J Anal Bioanal Chem; 2005 Aug; 382(8):1934-41. PubMed ID: 16021427 [TBL] [Abstract][Full Text] [Related]
3. Rejection of pharmaceuticals by forward osmosis membranes. Jin X; Shan J; Wang C; Wei J; Tang CY J Hazard Mater; 2012 Aug; 227-228():55-61. PubMed ID: 22640821 [TBL] [Abstract][Full Text] [Related]
4. Recovery of phenol from aqueous solution by supported liquid membrane using vegetable oils as liquid membrane. Venkateswaran P; Palanivelu K J Hazard Mater; 2006 Apr; 131(1-3):146-52. PubMed ID: 16236443 [TBL] [Abstract][Full Text] [Related]
5. Parallel artificial liquid membrane extraction of acidic drugs from human plasma. Roldán-Pijuán M; Pedersen-Bjergaard S; Gjelstad A Anal Bioanal Chem; 2015 Apr; 407(10):2811-9. PubMed ID: 25682297 [TBL] [Abstract][Full Text] [Related]
6. Extraction and preconcentration of salbutamol and terbutaline from aqueous samples using hollow fiber supported liquid membrane containing anionic carrier. Yamini Y; Reimann CT; Vatanara A; Jönsson JA J Chromatogr A; 2006 Aug; 1124(1-2):57-67. PubMed ID: 16716341 [TBL] [Abstract][Full Text] [Related]
7. Coupling of solid-phase microextraction with micellar desorption and high performance liquid chromatography for the determination of pharmaceutical residues in environmental liquid samples. Padrón ME; Ferrera ZS; Rodríguez JJ Biomed Chromatogr; 2009 Nov; 23(11):1175-85. PubMed ID: 19444801 [TBL] [Abstract][Full Text] [Related]
8. Membrane assisted micro-solid phase extraction of pharmaceuticals with amino and urea-grafted silica gel. Lim TH; Hu L; Yang C; He C; Lee HK J Chromatogr A; 2013 Nov; 1316():8-14. PubMed ID: 24119709 [TBL] [Abstract][Full Text] [Related]
9. Multi-residue method for determination of 58 pesticides, pharmaceuticals and personal care products in water using solvent demulsification dispersive liquid-liquid microextraction combined with liquid chromatography-tandem mass spectrometry. Caldas SS; Rombaldi C; Arias JL; Marube LC; Primel EG Talanta; 2016 Jan; 146():676-88. PubMed ID: 26695317 [TBL] [Abstract][Full Text] [Related]
10. Quantifying PPCP interaction with dissolved organic matter in aqueous solution: combined use of fluorescence quenching and tandem mass spectrometry. Hernandez-Ruiz S; Abrell L; Wickramasekara S; Chefetz B; Chorover J Water Res; 2012 Mar; 46(4):943-54. PubMed ID: 22172559 [TBL] [Abstract][Full Text] [Related]
11. Serial mixed-mode cation- and anion-exchange solid-phase extraction for separation of basic, neutral and acidic pharmaceuticals in wastewater and analysis by high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Lavén M; Alsberg T; Yu Y; Adolfsson-Erici M; Sun H J Chromatogr A; 2009 Jan; 1216(1):49-62. PubMed ID: 19054521 [TBL] [Abstract][Full Text] [Related]
12. Faster dispersive liquid-liquid microextraction methods using magnetic ionic liquids as solvents. Yu H; Merib J; Anderson JL J Chromatogr A; 2016 Sep; 1463():11-9. PubMed ID: 27515554 [TBL] [Abstract][Full Text] [Related]
13. Low-voltage electrically-enhanced microextraction as a novel technique for simultaneous extraction of acidic and basic drugs from biological fluids. Seidi S; Yamini Y; Rezazadeh M; Esrafili A J Chromatogr A; 2012 Jun; 1243():6-13. PubMed ID: 22575744 [TBL] [Abstract][Full Text] [Related]
15. Combination of Electromembrane Extraction and Liquid-Phase Microextraction in a Single Step: Simultaneous Group Separation of Acidic and Basic Drugs. Huang C; Seip KF; Gjelstad A; Shen X; Pedersen-Bjergaard S Anal Chem; 2015 Jul; 87(13):6951-7. PubMed ID: 26039105 [TBL] [Abstract][Full Text] [Related]
16. Removal of pharmaceuticals in drinking water treatment: effect of chemical coagulation. Vieno N; Tuhkanen T; Kronberg L Environ Technol; 2006 Feb; 27(2):183-92. PubMed ID: 16506514 [TBL] [Abstract][Full Text] [Related]
17. pH and Design on Albu PC; Tanczos SK; Ferencz Dinu A; Pîrțac A; Grosu AR; Pașcu D; Grosu VA; Bungău C; Nechifor AC Membranes (Basel); 2022 Mar; 12(4):. PubMed ID: 35448335 [TBL] [Abstract][Full Text] [Related]
18. Experimental studies on removal of arsenites from industrial effluents using tridodecylamine supported liquid membrane. Ali N; Azeem S; Khan A; Khan H; Kamal T; Asiri AM Environ Sci Pollut Res Int; 2020 Apr; 27(11):11932-11943. PubMed ID: 31981029 [TBL] [Abstract][Full Text] [Related]
19. Extraction of phenol from aqueous solutions by means of supported liquid membrane (MLS) containing tri-n-octyl phosphine oxide (TOPO). Zidi C; Tayeb R; Dhahbi M J Hazard Mater; 2011 Oct; 194():62-8. PubMed ID: 21871728 [TBL] [Abstract][Full Text] [Related]
20. Microextraction of mebendazole across supported liquid membrane forced by pH gradient and electrical field. Eskandari M; Yamini Y; Fotouhi L; Seidi S J Pharm Biomed Anal; 2011 Apr; 54(5):1173-9. PubMed ID: 21211924 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]