These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 15137719)
1. Effect of cross flow velocity, feed concentration, and pressure on the salt rejection of nanofiltration membranes in reactive dye having two sodium salts and NaCl mixtures: model application. Koyuncu I; Topacik D J Environ Sci Health A Tox Hazard Subst Environ Eng; 2004; 39(4):1055-68. PubMed ID: 15137719 [TBL] [Abstract][Full Text] [Related]
2. Factors influencing flux decline during nanofiltration of solutions containing dyes and salts. Koyuncu I; Topacik D; Wiesner MR Water Res; 2004 Jan; 38(2):432-40. PubMed ID: 14675655 [TBL] [Abstract][Full Text] [Related]
3. Comparative evaluation of the results for the synthetic and actual reactive dye bath effluent treatment by nanofiltration membranes. Koyuncu I; Topacik D; Yuksel E J Environ Sci Health A Tox Hazard Subst Environ Eng; 2003; 38(10):2209-18. PubMed ID: 14524675 [TBL] [Abstract][Full Text] [Related]
4. Preparation of three-bore hollow fiber charged nanofiltration membrane for separation of organics and salts. Deng J; Zhang Y; Liu J; Zhang H Water Sci Technol; 2012; 65(1):171-6. PubMed ID: 22173422 [TBL] [Abstract][Full Text] [Related]
5. Experimental study of water and salt fluxes through reverse osmosis membranes. Zhou W; Song L Environ Sci Technol; 2005 May; 39(9):3382-7. PubMed ID: 15926593 [TBL] [Abstract][Full Text] [Related]
6. Nanofiltration process of glyphosate simulated wastewater. Liu ZY; Xie M; Ni F; Xu YH Water Sci Technol; 2012; 65(5):816-22. PubMed ID: 22339015 [TBL] [Abstract][Full Text] [Related]
7. Effect of operating conditions on the separation of ammonium and nitrate ions with nanofiltration and reverse osmosis membranes. Koyuncu I J Environ Sci Health A Tox Hazard Subst Environ Eng; 2002 Aug; 37(7):1347-59. PubMed ID: 15328697 [TBL] [Abstract][Full Text] [Related]
8. Comparative performance of flat sheet and spiral wound modules in the nanofiltration of reactive dye solution. Patel TM; Chheda H; Baheti A; Patel P; Nath K Environ Sci Pollut Res Int; 2011 Aug; 19(7):2994-3004. PubMed ID: 22351259 [TBL] [Abstract][Full Text] [Related]
9. Removal of micropollutants from water by commercially available nanofiltration membranes. Cuhorka J; Wallace E; Mikulášek P Sci Total Environ; 2020 Jun; 720():137474. PubMed ID: 32325567 [TBL] [Abstract][Full Text] [Related]
10. Treatment of complex Remazol dye effluent using sawdust- and coal-based activated carbons. Vijayaraghavan K; Won SW; Yun YS J Hazard Mater; 2009 Aug; 167(1-3):790-6. PubMed ID: 19231078 [TBL] [Abstract][Full Text] [Related]
11. Effects of ion concentration and natural organic matter on arsenic(V) removal by nanofiltration under different transmembrane pressures. Yu Y; Zhao C; Wang Y; Fan W; Luan Z J Environ Sci (China); 2013 Feb; 25(2):302-7. PubMed ID: 23596950 [TBL] [Abstract][Full Text] [Related]
12. Characterisation and application of a novel positively charged nanofiltration membrane for the treatment of textile industry wastewaters. Cheng S; Oatley DL; Williams PM; Wright CJ Water Res; 2012 Jan; 46(1):33-42. PubMed ID: 22078250 [TBL] [Abstract][Full Text] [Related]
13. Preparation of SGO-modified nanofiltration membrane and its application in SO Zhang Y; Zhao C; Zhang S; Yu L; Li J; Hou LA J Environ Sci (China); 2019 Apr; 78():183-192. PubMed ID: 30665637 [TBL] [Abstract][Full Text] [Related]
14. Selective recovery of salt from coal gasification brine by nanofiltration membranes. Li K; Ma W; Han H; Xu C; Han Y; Wang D; Ma W; Zhu H J Environ Manage; 2018 Oct; 223():306-313. PubMed ID: 29935445 [TBL] [Abstract][Full Text] [Related]
15. Cake-enhanced concentration polarization: a new fouling mechanism for salt-rejecting membranes. Hoek EM; Elimelech M Environ Sci Technol; 2003 Dec; 37(24):5581-8. PubMed ID: 14717167 [TBL] [Abstract][Full Text] [Related]
16. Achieving low concentrations of chromium in drinking water by nanofiltration: membrane performance and selection. Giagnorio M; Ruffino B; Grinic D; Steffenino S; Meucci L; Zanetti MC; Tiraferri A Environ Sci Pollut Res Int; 2018 Sep; 25(25):25294-25305. PubMed ID: 29946838 [TBL] [Abstract][Full Text] [Related]
17. Nanofiltration membranes for salt and dye filtration: effect of membrane properties on performances. Ağtaş M; Ormancı-Acar T; Keskin B; Türken T; Koyuncu İ Water Sci Technol; 2021 May; 83(9):2146-2159. PubMed ID: 33989182 [TBL] [Abstract][Full Text] [Related]
18. Rejection of emerging organic micropollutants in nanofiltration-reverse osmosis membrane applications. Xu P; Drewes JE; Bellona C; Amy G; Kim TU; Adam M; Heberer T Water Environ Res; 2005; 77(1):40-8. PubMed ID: 15765934 [TBL] [Abstract][Full Text] [Related]
19. Influence of operating parameters on the arsenic removal by nanofiltration. Figoli A; Cassano A; Criscuoli A; Mozumder MS; Uddin MT; Islam MA; Drioli E Water Res; 2010 Jan; 44(1):97-104. PubMed ID: 19781734 [TBL] [Abstract][Full Text] [Related]
20. Dichloroaniline retention by nanofiltration membranes. Causserand C; Aimar P; Cravedi JP; Singlande E Water Res; 2005 Apr; 39(8):1594-600. PubMed ID: 15878032 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]