BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 15137783)

  • 1. The dipole moment, polarizabilities, and first hyperpolarizabilities of HArF. A computational and comparative study.
    Avramopoulos A; Reis H; Li J; Papadopoulos MG
    J Am Chem Soc; 2004 May; 126(19):6179-84. PubMed ID: 15137783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electric dipole (hyper)polarizabilities of selected X2Y2 and X3Y3 (X = Al, Ga, In and Y = P, As): III-V semiconductor clusters. An ab initio comparative study.
    Karamanis P; Pouchan C; Leszczynski J
    J Phys Chem A; 2008 Dec; 112(51):13662-71. PubMed ID: 19093824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electronic spectra and (hyper)polarizabilities of non-centrosymmetric D-A-D chromophores. An experimentally based three-state model and a theoretical TDDFT study of ketocyanines.
    Ponterini G; Vanossi D; Krasnaya ZA; Tatikolov AS; Momicchioli F
    Phys Chem Chem Phys; 2011 May; 13(20):9507-17. PubMed ID: 21487586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rare gas atomic number dependence of the hyperpolarizability for rare gas inserted fluorohydrides, HRgF (Rg = He, Ar, and Kr).
    Liu ZB; Li ZR; Zuo MH; Li QZ; Ma F; Li ZJ; Chen GH; Sun CC
    J Chem Phys; 2009 Jul; 131(4):044308. PubMed ID: 19655868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intensity-carrying modes important for vibrational polarizabilities and hyperpolarizabilities of molecules: derivation from the algebraic properties of formulas and applications.
    Torii H
    J Comput Chem; 2002 Jul; 23(10):997-1006. PubMed ID: 12116404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analytic density functional theory calculations of pure vibrational hyperpolarizabilities: the first dipole hyperpolarizability of retinal and related molecules.
    Gao B; Ringholm M; Bast R; Ruud K; Thorvaldsen AJ; Jaszuński M
    J Phys Chem A; 2014 Jan; 118(4):748-56. PubMed ID: 24405250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical investigation of the (hyper)polarizabilities of pyrrole homologues C4H4XH (X = N, P, As, Sb, Bi). A coupled-cluster and density functional theory study.
    Alparone A; Reis H; Papadopoulos MG
    J Phys Chem A; 2006 May; 110(17):5909-18. PubMed ID: 16640389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly accurate CCSD(R12) and CCSD(F12) optical response properties using standard triple-zeta basis sets.
    Yang J; Hättig C
    J Chem Phys; 2009 Aug; 131(7):074102. PubMed ID: 19708727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electronic and vibrational contributions to first hyperpolarizability of donor-acceptor-substituted azobenzene.
    Zaleśny R; Bulik IW; Bartkowiak W; Luis JM; Avramopoulos A; Papadopoulos MG; Krawczyk P
    J Chem Phys; 2010 Dec; 133(24):244308. PubMed ID: 21197994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linear optical transmission measurements and computational study of linear polarizabilities, first hyperpolarizabilities of a dinuclear iron(III) complex.
    Karakas A; Elmali A; Unver H
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Nov; 68(3):567-72. PubMed ID: 17353142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dipole moment and rovibrational intensities in the electronic ground state of NH3: bridging the gap between ab initio theory and spectroscopic experiment.
    Yurchenko SN; Carvajal M; Lin H; Zheng J; Thiel W; Jensen P
    J Chem Phys; 2005 Mar; 122(10):104317. PubMed ID: 15836325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct metal-metal interaction contributions to quadratic hyperpolarizability: a study on dirhenium complexes.
    Li Q; Sa R; Wei Y; Wu K
    J Phys Chem A; 2008 Jun; 112(22):4965-72. PubMed ID: 18461913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polarizabilities and hyperpolarizabilities for the atoms Al, Si, P, S, Cl, and Ar: Coupled cluster calculations.
    Lupinetti C; Thakkar AJ
    J Chem Phys; 2005 Jan; 122(4):44301. PubMed ID: 15740242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. After the electronic field: structure, bonding, and the first hyperpolarizability of HArF.
    Wu HQ; Zhong RL; Kan YH; Sun SL; Zhang M; Xu HL; Su ZM
    J Comput Chem; 2013 Apr; 34(11):952-7. PubMed ID: 23288812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic generation of force fields and property surfaces for use in variational vibrational calculations of anharmonic vibrational energies and zero-point vibrational averaged properties.
    Kongsted J; Christiansen O
    J Chem Phys; 2006 Sep; 125(12):124108. PubMed ID: 17014167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calculations of static dipole polarizabilities of alkali dimers: prospects for alignment of ultracold molecules.
    Deiglmayr J; Aymar M; Wester R; Weidemüller M; Dulieu O
    J Chem Phys; 2008 Aug; 129(6):064309. PubMed ID: 18715071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical investigation of ground and excited states of the methylene amidogene radical (H(2)CN).
    Eisfeld W
    J Chem Phys; 2004 Apr; 120(13):6056-63. PubMed ID: 15267489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlations of the stability, static dipole polarizabilities, and electronic properties of yttrium clusters.
    Li XB; Wang HY; Lv R; Wu WD; Luo JS; Tang YJ
    J Phys Chem A; 2009 Sep; 113(38):10335-42. PubMed ID: 19722531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Density functional calculations of the vibronic structure of electronic absorption spectra.
    Dierksen M; Grimme S
    J Chem Phys; 2004 Feb; 120(8):3544-54. PubMed ID: 15268516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frequency-dependent nonlinear optical properties with explicitly correlated coupled-cluster response theory using the CCSD(R12) model.
    Neiss C; Hättig C
    J Chem Phys; 2007 Apr; 126(15):154101. PubMed ID: 17461608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.