These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 15137783)

  • 41. Ultralarge hyperpolarizability twisted pi-electron system electro-optic chromophores: synthesis, solid-state and solution-phase structural characteristics, electronic structures, linear and nonlinear optical properties, and computational studies.
    Kang H; Facchetti A; Jiang H; Cariati E; Righetto S; Ugo R; Zuccaccia C; Macchioni A; Stern CL; Liu Z; Ho ST; Brown EC; Ratner MA; Marks TJ
    J Am Chem Soc; 2007 Mar; 129(11):3267-86. PubMed ID: 17309258
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The electronic spectrum of the fluoroborane free radical. I. Theoretical calculation of the vibronic energy levels of the ground and first excited electronic states.
    Sunahori FX; Clouthier DJ; Carter S; Tarroni R
    J Chem Phys; 2009 Apr; 130(16):164309. PubMed ID: 19405581
    [TBL] [Abstract][Full Text] [Related]  

  • 43. An ab initio potential energy surface and predissociative resonances of HArF.
    Li H; Xie D; Guo H
    J Chem Phys; 2004 Mar; 120(9):4273-80. PubMed ID: 15268596
    [TBL] [Abstract][Full Text] [Related]  

  • 44. CASSCF and CASPT2 studies on the structures, transition energies, and dipole moments of ground and excited states for azulene.
    Murakami A; Kobayashi T; Goldberg A; Nakamura S
    J Chem Phys; 2004 Jan; 120(3):1245-52. PubMed ID: 15268250
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Theoretical study of the effect of structural modifications on the hyperpolarizabilities of indigo derivatives.
    Nandi PK; Panja N; Ghanty TK; Kar T
    J Phys Chem A; 2009 Mar; 113(11):2623-31. PubMed ID: 19226126
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Formation of HArF in solid Ar revisited: are mobile vacancies involved in the matrix-site conversion at 30 K?
    Khriachtchev L; Lignell A; Rasanen M
    J Chem Phys; 2004 Feb; 120(7):3353-7. PubMed ID: 15268489
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The electronic structure of alkali aurides. A four-component Dirac-Kohn-Sham study.
    Belpassi L; Tarantelli F; Sgamellotti A; Quiney HM
    J Phys Chem A; 2006 Apr; 110(13):4543-54. PubMed ID: 16571062
    [TBL] [Abstract][Full Text] [Related]  

  • 48. An ab initio and TD-DFT study of solvent effect contributions to the electronic spectrum of Nile Red.
    Tuck PO; Mawhinney RC; Rappon M
    Phys Chem Chem Phys; 2009 Jun; 11(22):4471-80. PubMed ID: 19475165
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ab initio potential energy surfaces, total absorption cross sections, and product quantum state distributions for the low-lying electronic states of N(2)O.
    Daud MN; Balint-Kurti GG; Brown A
    J Chem Phys; 2005 Feb; 122(5):54305. PubMed ID: 15740320
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dipole moments of HDO in highly excited vibrational states measured by Stark induced photofragment quantum beat spectroscopy.
    Theulé P; Callegari A; Rizzo TR; Muenter JS
    J Chem Phys; 2005 Mar; 122(12):124312. PubMed ID: 15836383
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Analytic calculations of vibrational hyperpolarizabilities in the atomic orbital basis.
    Thorvaldsen AJ; Ruud K; Jaszuński M
    J Phys Chem A; 2008 Nov; 112(46):11942-50. PubMed ID: 18947217
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Theoretical investigation of excited and Rydberg states of imidogen radical NH: potential energy curves, spectroscopic constants, and dipole moment functions.
    Owono Owono LC; Jaidane N; Kwato Njock MG; Ben Lakhdar Z
    J Chem Phys; 2007 Jun; 126(24):244302. PubMed ID: 17614544
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Study of absorption spectra and (hyper)polarizabilities of SiC(n) and Si(n)C (n=2-6) clusters using density functional response approach.
    Lan YZ; Feng YL
    J Chem Phys; 2009 Aug; 131(5):054509. PubMed ID: 19673576
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Resonant Raman spectra and first molecular hyperpolarizabilities of strongly charge-transfer molecules.
    Hung ST; Wang CH; Kelley AM
    J Chem Phys; 2005 Oct; 123(14):144503. PubMed ID: 16238403
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Theoretical study on the second-order nonlinear optical properties of asymmetric spirosilabifluorene derivatives.
    Yang G; Su Z; Qin C
    J Phys Chem A; 2006 Apr; 110(14):4817-21. PubMed ID: 16599450
    [TBL] [Abstract][Full Text] [Related]  

  • 56. 2-Aminopurine excited state electronic structure measured by stark spectroscopy.
    Kodali G; Kistler KA; Matsika S; Stanley RJ
    J Phys Chem B; 2008 Feb; 112(6):1789-95. PubMed ID: 18211056
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Polarizabilities of the alkali anions: Li- to Fr-.
    Lupinetti C; Thakkar AJ
    J Chem Phys; 2006 Nov; 125(19):194317. PubMed ID: 17129113
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Antiparallel-aligned neutral-ground-state and zwitterionic chromophores as a nonlinear optical material.
    Liao Y; Bhattacharjee S; Firestone KA; Eichinger BE; Paranji R; Anderson CA; Robinson BH; Reid PJ; Dalton LR
    J Am Chem Soc; 2006 May; 128(21):6847-53. PubMed ID: 16719465
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Molecular structure, spectroscopic studies and first-order molecular hyperpolarizabilities of ferulic acid by density functional study.
    Sebastian S; Sundaraganesan N; Manoharan S
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Oct; 74(2):312-23. PubMed ID: 19581124
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Computational study of molecules with high intrinsic hyperpolarizabilities.
    Cardoso C; Abreu PE; Milne BF; Nogueira F
    J Phys Chem A; 2010 Oct; 114(39):10676-83. PubMed ID: 20831243
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.