These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
352 related articles for article (PubMed ID: 15137834)
1. Enzymatic hydrolysis of chestnut purée: process optimization using mixtures of alpha-amylase and glucoamylase. López C; Torrado A; Fuciños P; Guerra NP; Pastrana L J Agric Food Chem; 2004 May; 52(10):2907-14. PubMed ID: 15137834 [TBL] [Abstract][Full Text] [Related]
2. Optimization of solid-state enzymatic hydrolysis of chestnut using mixtures of alpha-amylase and glucoamylase. López C; Torrado A; Guerra NP; Pastrana L J Agric Food Chem; 2005 Feb; 53(4):989-95. PubMed ID: 15713010 [TBL] [Abstract][Full Text] [Related]
3. Starch degradation by glucoamylase Glm from Saccharomycopsis fibuligera IFO 0111 in the presence and absence of a commercial pullulanase. Valachová K; Horváthová V Chem Biodivers; 2007 May; 4(5):874-80. PubMed ID: 17511002 [TBL] [Abstract][Full Text] [Related]
4. Genome mining for new α-amylase and glucoamylase encoding sequences and high level expression of a glucoamylase from Talaromyces stipitatus for potential raw starch hydrolysis. Xiao Z; Wu M; Grosse S; Beauchemin M; Lévesque M; Lau PC Appl Biochem Biotechnol; 2014 Jan; 172(1):73-86. PubMed ID: 24046254 [TBL] [Abstract][Full Text] [Related]
5. Expression of a fungal glucoamylase in transgenic rice seeds. Xu X; Huang J; Fang J; Lin C; Cheng J; Shen Z Protein Expr Purif; 2008 Oct; 61(2):113-6. PubMed ID: 18588984 [TBL] [Abstract][Full Text] [Related]
6. Cloning of a novel thermostable glucoamylase from thermophilic fungus Rhizomucor pusillus and high-level co-expression with α-amylase in Pichia pastoris. He Z; Zhang L; Mao Y; Gu J; Pan Q; Zhou S; Gao B; Wei D BMC Biotechnol; 2014 Dec; 14():114. PubMed ID: 25539598 [TBL] [Abstract][Full Text] [Related]
7. Complete starch hydrolysis by the synergistic action of amylase and glucoamylase: impact of calcium ions. Presečki AV; Blažević ZF; Vasić-Rački D Bioprocess Biosyst Eng; 2013 Nov; 36(11):1555-62. PubMed ID: 23440513 [TBL] [Abstract][Full Text] [Related]
8. In vitro assessment of the enzymatic degradation of several starch based biomaterials. Azevedo HS; Gama FM; Reis RL Biomacromolecules; 2003; 4(6):1703-12. PubMed ID: 14606899 [TBL] [Abstract][Full Text] [Related]
9. Co-conjugation vis-à-vis individual conjugation of α-amylase and glucoamylase for hydrolysis of starch. Jadhav SB; Singhal RS Carbohydr Polym; 2013 Oct; 98(1):1191-7. PubMed ID: 23987463 [TBL] [Abstract][Full Text] [Related]
10. Kinetics of the surface hydrolysis of raw starch by glucoamylase. Tatsumi H; Katano H J Agric Food Chem; 2005 Oct; 53(21):8123-7. PubMed ID: 16218653 [TBL] [Abstract][Full Text] [Related]
11. Starch fermentation by recombinant saccharomyces cerevisiae strains expressing the alpha-amylase and glucoamylase genes from lipomyces kononenkoae and saccharomycopsis fibuligera. Eksteen JM; Van Rensburg P; Cordero Otero RR; Pretorius IS Biotechnol Bioeng; 2003 Dec; 84(6):639-46. PubMed ID: 14595776 [TBL] [Abstract][Full Text] [Related]
12. Kinetics of in vitro digestion of starches monitored by time-resolved (1)H Nuclear Magnetic Resonance. Dona AC; Pages G; Gilbert RG; Gaborieau M; Kuchel PW Biomacromolecules; 2009 Mar; 10(3):638-44. PubMed ID: 19209867 [TBL] [Abstract][Full Text] [Related]
13. Isoglucose production from raw starchy materials based on a two-stage enzymatic system. Gromada A; Fiedurek J; Szczodrak J Pol J Microbiol; 2008; 57(2):141-8. PubMed ID: 18646402 [TBL] [Abstract][Full Text] [Related]
14. Amylolytic hydrolysis of native starch granules affected by granule surface area. Kim JC; Kong BW; Kim MJ; Lee SH J Food Sci; 2008 Nov; 73(9):C621-4. PubMed ID: 19021791 [TBL] [Abstract][Full Text] [Related]
15. Repeated fermentation from raw starch using Saccharomyces cerevisiae displaying both glucoamylase and α-amylase. Yamakawa S; Yamada R; Tanaka T; Ogino C; Kondo A Enzyme Microb Technol; 2012 May; 50(6-7):343-7. PubMed ID: 22500903 [TBL] [Abstract][Full Text] [Related]
16. Evidence of native starch degradation with human small intestinal maltase-glucoamylase (recombinant). Ao Z; Quezada-Calvillo R; Sim L; Nichols BL; Rose DR; Sterchi EE; Hamaker BR FEBS Lett; 2007 May; 581(13):2381-8. PubMed ID: 17485087 [TBL] [Abstract][Full Text] [Related]
17. Enzymatic hydrolysis of soluble starch with an alpha-amylase from Bacillus licheniformis. Bravo Rodríguez V; Jurado Alameda E; Martínez Gallegos JF; Reyes Requena A; García López AI Biotechnol Prog; 2006; 22(3):718-22. PubMed ID: 16739954 [TBL] [Abstract][Full Text] [Related]
18. Construction of a direct starch-fermenting industrial strain of Saccharomyces cerevisiae producing glucoamylase, alpha-amylase and debranching enzyme. Kim JH; Kim HR; Lim MH; Ko HM; Chin JE; Lee HB; Kim IC; Bai S Biotechnol Lett; 2010 May; 32(5):713-9. PubMed ID: 20131079 [TBL] [Abstract][Full Text] [Related]
19. Enzymatic hydrolysis of potato pulp. Lesiecki M; Białas W; Lewandowicz G Acta Sci Pol Technol Aliment; 2012; 11(1):53-9. PubMed ID: 22230975 [TBL] [Abstract][Full Text] [Related]
20. Kinetics of enhanced ethanol productivity using raw starch hydrolyzing glucoamylase from Aspergillus niger mutant produced in solid state fermentation. Rajoka MI; Yasmin A; Latif F Lett Appl Microbiol; 2004; 39(1):13-8. PubMed ID: 15189282 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]