These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 15138448)

  • 1. Human respiratory uptake of chloroform and haloketones during showering.
    Xu X; Weisel CP
    J Expo Anal Environ Epidemiol; 2005 Jan; 15(1):6-16. PubMed ID: 15138448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dermal uptake of chloroform and haloketones during bathing.
    Xu X; Weisel CP
    J Expo Anal Environ Epidemiol; 2005 Jul; 15(4):289-96. PubMed ID: 15316574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Linking a PBPK model for chloroform with measured breath concentrations in showers: implications for dermal exposure models.
    McKone TE
    J Expo Anal Environ Epidemiol; 1993; 3(3):339-65. PubMed ID: 8260842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Percutaneous absorption of trihalomethanes, haloacetic acids, and haloketones.
    Xu X; Mariano TM; Laskin JD; Weisel CP
    Toxicol Appl Pharmacol; 2002 Oct; 184(1):19-26. PubMed ID: 12392965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhalation exposure to haloacetic acids and haloketones during showering.
    Xu X; Weisel CP
    Environ Sci Technol; 2003 Feb; 37(3):569-76. PubMed ID: 12630474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cancer risk associated with household exposure to chloroform.
    Lévesque B; Ayotte P; Tardif R; Ferron L; Gingras S; Schlouch E; Gingras G; Levallois P; Dewailly E
    J Toxicol Environ Health A; 2002 Apr; 65(7):489-502. PubMed ID: 11939707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of a physiologically based pharmacokinetic model to identify exposures consistent with human biomonitoring data for chloroform.
    Tan YM; Liao KH; Conolly RB; Blount BC; Mason AM; Clewell HJ
    J Toxicol Environ Health A; 2006 Sep; 69(18):1727-56. PubMed ID: 16864423
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Seasonal variations in the household exposures of Korean housewives to volatile tap water disinfection by-products.
    Kim H
    Sci Total Environ; 2008 Sep; 403(1-3):59-67. PubMed ID: 18571218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of physiologically based toxicokinetic models for improving the human indoor exposure assessment to water contaminants: trichloroethylene and trihalomethanes.
    Haddad S; Tardif GC; Tardif R
    J Toxicol Environ Health A; 2006 Dec; 69(23):2095-136. PubMed ID: 17060096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A compartmental model for the prediction of breath concentration and absorbed dose of chloroform after exposure while showering.
    Chinery RL; Gleason AK
    Risk Anal; 1993 Feb; 13(1):51-62. PubMed ID: 8451460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systemic uptake and clearance of chloroform by hairless rats following dermal exposure: II. Absorption of the neat solvent.
    Islam MS; Zhao L; Zhou J; Dong L; McDougal JN; Flynn GL
    Am Ind Hyg Assoc J; 1999; 60(4):438-43. PubMed ID: 10462777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimates of cancer risk from chloroform exposure during showering in Taiwan.
    Kuo HW; Chiang TF; Lo II; Lai JS; Chan CC; Wang JD
    Sci Total Environ; 1998 Jul; 218(1):1-7. PubMed ID: 9718740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the emissions of trichloroethylene, chloroform, and 1,2-dibromo-3-chloropropane in a full-size, experimental shower.
    Giardino NJ; Andelman JB
    J Expo Anal Environ Epidemiol; 1996; 6(4):413-23. PubMed ID: 9087862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of boiling water on disinfection by-product exposure.
    Krasner SW; Wright JM
    Water Res; 2005 Mar; 39(5):855-64. PubMed ID: 15743631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Routes of chloroform exposure and body burden from showering with chlorinated tap water.
    Jo WK; Weisel CP; Lioy PJ
    Risk Anal; 1990 Dec; 10(4):575-80. PubMed ID: 2287784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Approaches for evaluating the relevance of multiroute exposures in establishing guideline values for drinking water contaminants.
    Krishnan K; Carrier R
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2008; 26(3):300-16. PubMed ID: 18781539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predictors of personal air concentrations of chloroform among US adults in NHANES 1999-2000.
    Riederer AM; Bartell SM; Ryan PB
    J Expo Sci Environ Epidemiol; 2009 Mar; 19(3):248-59. PubMed ID: 18335002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: a review and roadmap for research.
    Richardson SD; Plewa MJ; Wagner ED; Schoeny R; Demarini DM
    Mutat Res; 2007; 636(1-3):178-242. PubMed ID: 17980649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chloroform exposure and the health risk associated with multiple uses of chlorinated tap water.
    Jo WK; Weisel CP; Lioy PJ
    Risk Anal; 1990 Dec; 10(4):581-5. PubMed ID: 2287785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ingestion, inhalation, and dermal exposures to chloroform and trichloroethene from tap water.
    Weisel CP; Jo WK
    Environ Health Perspect; 1996 Jan; 104(1):48-51. PubMed ID: 8834861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.