These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 15138736)

  • 1. Shear-induced alignment of self-associated hemoglobin in human erythrocytes: small angle neutron scattering studies.
    Garvey CJ; Knott RB; Drabarek E; Kuchel PW
    Eur Biophys J; 2004 Nov; 33(7):589-95. PubMed ID: 15138736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of shear rate on the optical properties of human blood in the spectral range 250 to 1100 nm.
    Friebel M; Helfmann J; Müller G; Meinke M
    J Biomed Opt; 2007; 12(5):054005. PubMed ID: 17994893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. De-activation of neutrophils in suspension by fluid shear stress: a requirement for erythrocytes.
    Komai Y; Schmid-Schönbein GW
    Ann Biomed Eng; 2005 Oct; 33(10):1375-86. PubMed ID: 16240086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alignment of worm-like micelles at intermediate and high shear rates.
    Arenas-Gómez B; Garza C; Liu Y; Castillo R
    J Colloid Interface Sci; 2020 Feb; 560():618-625. PubMed ID: 31685279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SANS studies of interacting hemoglobin in intact erythrocytes.
    Krueger S; Nossal R
    Biophys J; 1988 Jan; 53(1):97-105. PubMed ID: 2829985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measuring material microstructure under flow using 1-2 plane flow-small angle neutron scattering.
    Gurnon AK; Godfrin PD; Wagner NJ; Eberle AP; Butler P; Porcar L
    J Vis Exp; 2014 Feb; (84):e51068. PubMed ID: 24561395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shear- and magnetic-field-induced ordering in magnetic nanoparticle dispersion from small-angle neutron scattering.
    Krishnamurthy VV; Bhandar AS; Piao M; Zoto I; Lane AM; Nikles DE; Wiest JM; Mankey GJ; Porcar L; Glinka CJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 1):051406. PubMed ID: 12786151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ small-angle neutron scattering and rheological measurements of shear-induced gelation.
    Shibayama M; Kawada H; Kume T; Matsunaga T; Iwai H; Sano T; Osaka N; Miyazaki S; Okabe S; Endo H
    J Chem Phys; 2007 Oct; 127(14):144507. PubMed ID: 17935409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shear influence on colloidal cluster growth: a SANS and USANS study.
    Muzny C; de Campo L; Sokolova A; Garvey CJ; Rehm C; Hanley H
    J Appl Crystallogr; 2023 Oct; 56(Pt 5):1371-1380. PubMed ID: 37791358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shear Alignment of Bola-Amphiphilic Arginine-Coated Peptide Nanotubes.
    Hamley IW; Burholt S; Hutchinson J; Castelletto V; da Silva ER; Alves W; Gutfreund P; Porcar L; Dattani R; Hermida-Merino D; Newby G; Reza M; Ruokolainen J; Stasiak J
    Biomacromolecules; 2017 Jan; 18(1):141-149. PubMed ID: 27983808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Red blood cell orientation in orbit C = 0.
    Bitbol M
    Biophys J; 1986 May; 49(5):1055-68. PubMed ID: 3708090
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Orientational ordering in the nematic phase of a polyethylene glycol-peptide conjugate in aqueous solution.
    Hamley IW; Krysmann MJ; Newby GE; Castelletto V; Noirez L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 1):062901. PubMed ID: 18643322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polarized Raman spectroscopic investigations on hemoglobin ordering in red blood cells.
    Ahlawat S; Chowdhury A; Kumar N; Uppal A; Verma RS; Gupta PK
    J Biomed Opt; 2014 Aug; 19(8):087002. PubMed ID: 25121481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ordering fluctuations in a shear-banding wormlike micellar system.
    Angelico R; Rossi CO; Ambrosone L; Palazzo G; Mortensen K; Olsson U
    Phys Chem Chem Phys; 2010 Aug; 12(31):8856-62. PubMed ID: 20532324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural analysis of red blood cell aggregates under shear flow.
    Chesnutt JK; Marshall JS
    Ann Biomed Eng; 2010 Mar; 38(3):714-28. PubMed ID: 20024623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Micron-scale restructuring of gelling silica subjected to shear.
    de Campo L; Garvey CJ; Muzny CD; Rehm C; Hanley HJM
    J Colloid Interface Sci; 2019 Jan; 533():136-143. PubMed ID: 30165295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of hemolysis in red cell adenosine triphosphate release in simulated exercise conditions in vitro.
    Mairbäurl H; Ruppe FA; Bärtsch P
    Med Sci Sports Exerc; 2013 Oct; 45(10):1941-7. PubMed ID: 23575515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the effect of dynamic flow conditions on blood microstructure investigated with optical shearing microscopy and rheometry.
    Kaliviotis E; Yianneskis M
    Proc Inst Mech Eng H; 2007 Nov; 221(8):887-97. PubMed ID: 18161248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deformation of erythrocytes under shear: a small-angle light scattering study.
    Mazeron P; Muller S; el Azouzi H
    Biorheology; 1997; 34(2):99-110. PubMed ID: 9373393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic deformation and recovery response of red blood cells to a cyclically reversing shear flow: Effects of frequency of cyclically reversing shear flow and shear stress level.
    Watanabe N; Kataoka H; Yasuda T; Takatani S
    Biophys J; 2006 Sep; 91(5):1984-98. PubMed ID: 16766612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.