BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 15139035)

  • 21. A QM-MM interface between CHARMM and TURBOMOLE: implementation and application to systems in bulk phase and biologically active systems.
    Loferer MJ; Loeffler HH; Liedl KR
    J Comput Chem; 2003 Jul; 24(10):1240-9. PubMed ID: 12820132
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An improvement in quantum mechanical description of solute-solvent interactions in condensed systems via the number-adaptive multiscale quantum mechanical/molecular mechanical-molecular dynamics method: application to zwitterionic glycine in aqueous solution.
    Takenaka N; Kitamura Y; Koyano Y; Nagaoka M
    J Chem Phys; 2012 Jul; 137(2):024501. PubMed ID: 22803541
    [TBL] [Abstract][Full Text] [Related]  

  • 23. pKa calculations in solution and proteins with QM/MM free energy perturbation simulations: a quantitative test of QM/MM protocols.
    Riccardi D; Schaefer P; Cui Q
    J Phys Chem B; 2005 Sep; 109(37):17715-33. PubMed ID: 16853267
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structure and dynamics of the U4+ ion in aqueous solution: an ab initio quantum mechanical charge field molecular dynamics study.
    Frick RJ; Pribil AB; Hofer TS; Randolf BR; Bhattacharjee A; Rode BM
    Inorg Chem; 2009 May; 48(9):3993-4002. PubMed ID: 19338289
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Specific force field parameters determination for the hybrid ab initio QM/MM LSCF method.
    Ferré N; Assfeld X; Rivail JL
    J Comput Chem; 2002 Apr; 23(6):610-24. PubMed ID: 11939595
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantifying free energy profiles of proton transfer reactions in solution and proteins by using a diabatic FDFT mapping.
    Xiang Y; Warshel A
    J Phys Chem B; 2008 Jan; 112(3):1007-15. PubMed ID: 18166038
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ab initio calculation of proton-coupled electron transfer rates using the external-potential representation: a ubiquinol complex in solution.
    Yamamoto T; Kato S
    J Chem Phys; 2007 Jun; 126(22):224514. PubMed ID: 17581070
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Solvation dynamics in acetonitrile: a study incorporating solute electronic response and nuclear relaxation.
    Ingrosso F; Ladanyi BM; Mennucci B; Elola MD; Tomasi J
    J Phys Chem B; 2005 Mar; 109(8):3553-64. PubMed ID: 16851393
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ab initio quantum mechanics-based free energy perturbation method for calculating relative solvation free energies.
    Reddy MR; Singh UC; Erion MD
    J Comput Chem; 2007 Jan; 28(2):491-4. PubMed ID: 17186484
    [TBL] [Abstract][Full Text] [Related]  

  • 30. QM/MM-PBSA method to estimate free energies for reactions in proteins.
    Kaukonen M; Söderhjelm P; Heimdal J; Ryde U
    J Phys Chem B; 2008 Oct; 112(39):12537-48. PubMed ID: 18781715
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hybrid quantum mechanical and molecular mechanics study of the S(N)2 Reaction of CCl4 + OH- in aqueous solution: the potential of mean force, reaction energetics, and rate constants.
    Wang T; Yin H; Wang D; Valiev M
    J Phys Chem A; 2012 Mar; 116(9):2371-6. PubMed ID: 22339353
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Long-range electrostatic interactions in hybrid quantum and molecular mechanical dynamics using a lattice summation approach.
    Dehez F; Martins-Costa MT; Rinaldi D; Millot C
    J Chem Phys; 2005 Jun; 122(23):234503. PubMed ID: 16008458
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A quantum chemical approach to the free energy calculations in condensed systems: the QM/MM method combined with the theory of energy representation.
    Takahashi H; Matubayasi N; Nakahara M; Nitta T
    J Chem Phys; 2004 Sep; 121(9):3989-99. PubMed ID: 15332945
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An explicit quantum chemical method for modeling large solvation shells applied to aminocoumarin C151.
    Neugebauer J; Jacob CR; Wesolowski TA; Baerends EJ
    J Phys Chem A; 2005 Sep; 109(34):7805-14. PubMed ID: 16834158
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of a quantum mechanics-based free-energy perturbation method: use in the calculation of relative solvation free energies.
    Reddy MR; Singh UC; Erion MD
    J Am Chem Soc; 2004 May; 126(20):6224-5. PubMed ID: 15149207
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An efficient method for the calculation of quantum mechanics/molecular mechanics free energies.
    Woods CJ; Manby FR; Mulholland AJ
    J Chem Phys; 2008 Jan; 128(1):014109. PubMed ID: 18190187
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Seamless Grid-Based Interface for Mean-Field QM/MM Coupled with Efficient Solvation Free Energy Calculations.
    Lim HK; Lee H; Kim H
    J Chem Theory Comput; 2016 Oct; 12(10):5088-5099. PubMed ID: 27585395
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Combination of molecular dynamics method and 3D-RISM theory for conformational sampling of large flexible molecules in solution.
    Miyata T; Hirata F
    J Comput Chem; 2008 Apr; 29(6):871-82. PubMed ID: 17963231
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Retinal models: comparison of electronic absorption spectra in the gas phase and in methanol solution.
    Muñoz-Losa A; Fdez Galván I; Aguilar MA; Martín ME
    J Phys Chem B; 2008 Jul; 112(29):8815-23. PubMed ID: 18590305
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Computational methods for the study of enzymic reaction mechanisms III: a perturbation plus QM/MM approach for calculating relative free energies of protonation.
    Cummins PL; Gready JE
    J Comput Chem; 2005 Apr; 26(6):561-8. PubMed ID: 15726569
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.