BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

830 related articles for article (PubMed ID: 15139541)

  • 1. Supersonic shear imaging: a new technique for soft tissue elasticity mapping.
    Bercoff J; Tanter M; Fink M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Apr; 51(4):396-409. PubMed ID: 15139541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of viscosity in the impulse diffraction field of elastic waves induced by the acoustic radiation force.
    Bercoff J; Tanter M; Muller M; Fink M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Nov; 51(11):1523-36. PubMed ID: 15600098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Narrowband shear wave generation by a Finite-Amplitude radiation force: The fundamental component.
    Giannoula A; Cobbold RS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Feb; 55(2):343-58. PubMed ID: 18334341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Viscoelastic and anisotropic mechanical properties of in vivo muscle tissue assessed by supersonic shear imaging.
    Gennisson JL; Deffieux T; Macé E; Montaldo G; Fink M; Tanter M
    Ultrasound Med Biol; 2010 May; 36(5):789-801. PubMed ID: 20420970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative viscoelasticity mapping of human liver using supersonic shear imaging: preliminary in vivo feasibility study.
    Muller M; Gennisson JL; Deffieux T; Tanter M; Fink M
    Ultrasound Med Biol; 2009 Feb; 35(2):219-29. PubMed ID: 19081665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monitoring thermally-induced lesions with supersonic shear imaging.
    Bercoff J; Pernot M; Tanter M; Fink M
    Ultrason Imaging; 2004 Apr; 26(2):71-84. PubMed ID: 15344412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computer-aided diagnosis based on quantitative elastographic features with supersonic shear wave imaging.
    Xiao Y; Zeng J; Niu L; Zeng Q; Wu T; Wang C; Zheng R; Zheng H
    Ultrasound Med Biol; 2014 Feb; 40(2):275-86. PubMed ID: 24268454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-resolution quantitative imaging of cornea elasticity using supersonic shear imaging.
    Tanter M; Touboul D; Gennisson JL; Bercoff J; Fink M
    IEEE Trans Med Imaging; 2009 Dec; 28(12):1881-93. PubMed ID: 19423431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sonoelastographic imaging of interference patterns for estimation of the shear velocity of homogeneous biomaterials.
    Wu Z; Taylor LS; Rubens DJ; Parker KJ
    Phys Med Biol; 2004 Mar; 49(6):911-22. PubMed ID: 15104315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sonoelastographic imaging of interference patterns for estimation of shear velocity distribution in biomaterials.
    Wu Z; Hoyt K; Rubens DJ; Parker KJ
    J Acoust Soc Am; 2006 Jul; 120(1):535-45. PubMed ID: 16875250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative assessment of breast lesion viscoelasticity: initial clinical results using supersonic shear imaging.
    Tanter M; Bercoff J; Athanasiou A; Deffieux T; Gennisson JL; Montaldo G; Muller M; Tardivon A; Fink M
    Ultrasound Med Biol; 2008 Sep; 34(9):1373-86. PubMed ID: 18395961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo breast tumor detection using transient elastography.
    Bercoff J; Chaffai S; Tanter M; Sandrin L; Catheline S; Fink M; Gennisson JL; Meunier M
    Ultrasound Med Biol; 2003 Oct; 29(10):1387-96. PubMed ID: 14597335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shear wave spectroscopy for in vivo quantification of human soft tissues visco-elasticity.
    Deffieux T; Montaldo G; Tanter M; Fink M
    IEEE Trans Med Imaging; 2009 Mar; 28(3):313-22. PubMed ID: 19244004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-source and multi-directional shear wave generation with intersecting steered ultrasound push beams.
    Nabavizadeh A; Song P; Chen S; Greenleaf JF; Urban MW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Apr; 62(4):647-62. PubMed ID: 25881343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasound elastography based on multiscale estimations of regularized displacement fields.
    Pellot-Barakat C; Frouin F; Insana MF; Herment A
    IEEE Trans Med Imaging; 2004 Feb; 23(2):153-63. PubMed ID: 14964561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measuring the nonlinear elastic properties of tissue-like phantoms.
    Erkamp RQ; Skovoroda AR; Emelianov SY; O'Donnell M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Apr; 51(4):410-9. PubMed ID: 15139542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elasticity reconstruction from displacement and confidence measures of a multi-compressed ultrasound RF sequence.
    Li J; Cui Y; Kadour M; Noble JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Feb; 55(2):319-26. PubMed ID: 18334339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acoustoelasticity in soft solids: assessment of the nonlinear shear modulus with the acoustic radiation force.
    Gennisson JL; Rénier M; Catheline S; Barrière C; Bercoff J; Tanter M; Fink M
    J Acoust Soc Am; 2007 Dec; 122(6):3211-9. PubMed ID: 18247733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noise reduction using spatial-angular compounding for elastography.
    Techavipoo U; Chen Q; Varghese T; Zagzebski JA; Madsen EL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 May; 51(5):510-20. PubMed ID: 15217229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Propagation of spontaneously actuated pulsive vibration in human heart wall and in vivo viscoelasticity estimation.
    Kanai H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Nov; 52(11):1931-42. PubMed ID: 16422405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 42.