BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 15139755)

  • 1. BREED: Generating novel inhibitors through hybridization of known ligands. Application to CDK2, p38, and HIV protease.
    Pierce AC; Rao G; Bemis GW
    J Med Chem; 2004 May; 47(11):2768-75. PubMed ID: 15139755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tagged fragment method for evolutionary structure-based de novo lead generation and optimization.
    Liu Q; Masek B; Smith K; Smith J
    J Med Chem; 2007 Nov; 50(22):5392-402. PubMed ID: 17918924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A detailed comparison of current docking and scoring methods on systems of pharmaceutical relevance.
    Perola E; Walters WP; Charifson PS
    Proteins; 2004 Aug; 56(2):235-49. PubMed ID: 15211508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. E-novo: an automated workflow for efficient structure-based lead optimization.
    Pearce BC; Langley DR; Kang J; Huang H; Kulkarni A
    J Chem Inf Model; 2009 Jul; 49(7):1797-809. PubMed ID: 19552372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Refining the multiple protein structure pharmacophore method: consistency across three independent HIV-1 protease models.
    Meagher KL; Lerner MG; Carlson HA
    J Med Chem; 2006 Jun; 49(12):3478-84. PubMed ID: 16759090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational design of novel fullerene analogues as potential HIV-1 PR inhibitors: Analysis of the binding interactions between fullerene inhibitors and HIV-1 PR residues using 3D QSAR, molecular docking and molecular dynamics simulations.
    Durdagi S; Mavromoustakos T; Chronakis N; Papadopoulos MG
    Bioorg Med Chem; 2008 Dec; 16(23):9957-74. PubMed ID: 18996019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scaffold hopping through virtual screening using 2D and 3D similarity descriptors: ranking, voting, and consensus scoring.
    Zhang Q; Muegge I
    J Med Chem; 2006 Mar; 49(5):1536-48. PubMed ID: 16509572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incorporating protein flexibility in structure-based drug discovery: using HIV-1 protease as a test case.
    Meagher KL; Carlson HA
    J Am Chem Soc; 2004 Oct; 126(41):13276-81. PubMed ID: 15479081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CONCERTS: dynamic connection of fragments as an approach to de novo ligand design.
    Pearlman DA; Murcko MA
    J Med Chem; 1996 Apr; 39(8):1651-63. PubMed ID: 8648605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. General model for estimation of the inhibition of protein kinases using Monte Carlo simulations.
    Tominaga Y; Jorgensen WL
    J Med Chem; 2004 May; 47(10):2534-49. PubMed ID: 15115396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting the open-flap conformation of HIV-1 protease with pyrrolidine-based inhibitors.
    Böttcher J; Blum A; Dörr S; Heine A; Diederich WE; Klebe G
    ChemMedChem; 2008 Sep; 3(9):1337-44. PubMed ID: 18720485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ligand design package (Ludi--MSI) applied to known inhibitors of the HIV-1 protease. Test of performance.
    Bogacewicz R; Trylska J; Geller M
    Acta Pol Pharm; 2000 Nov; 57 Suppl():25-8. PubMed ID: 11293255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated molecular simulation based binding affinity calculator for ligand-bound HIV-1 proteases.
    Sadiq SK; Wright D; Watson SJ; Zasada SJ; Stoica I; Coveney PV
    J Chem Inf Model; 2008 Sep; 48(9):1909-19. PubMed ID: 18710212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative studies on inhibitors of HIV protease: a target for drug design.
    Jayaraman S; Shah K
    In Silico Biol; 2008; 8(5-6):427-47. PubMed ID: 19374129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discovery of HIV-1 protease inhibitors with picomolar affinities incorporating N-aryl-oxazolidinone-5-carboxamides as novel P2 ligands.
    Ali A; Reddy GS; Cao H; Anjum SG; Nalam MN; Schiffer CA; Rana TM
    J Med Chem; 2006 Dec; 49(25):7342-56. PubMed ID: 17149864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of HIV wild-type and mutant structures via in silico docking against diverse ligand libraries.
    Chang MW; Lindstrom W; Olson AJ; Belew RK
    J Chem Inf Model; 2007; 47(3):1258-62. PubMed ID: 17447753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid screening for HIV-1 protease inhibitor leads through X-ray diffraction.
    Pillai B; Kannan KK; Bhat SV; Hosur MV
    Acta Crystallogr D Biol Crystallogr; 2004 Mar; 60(Pt 3):594-6. PubMed ID: 14993705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combinatorial design of nonsymmetrical cyclic urea inhibitors of aspartic protease of HIV-1.
    Frecer V; Burello E; Miertus S
    Bioorg Med Chem; 2005 Sep; 13(18):5492-501. PubMed ID: 16054372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CORES: an automated method for generating three-dimensional models of protein/ligand complexes.
    Hare BJ; Walters WP; Caron PR; Bemis GW
    J Med Chem; 2004 Sep; 47(19):4731-40. PubMed ID: 15341488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coarse-grained molecular dynamics of ligands binding into protein: The case of HIV-1 protease inhibitors.
    Li D; Liu MS; Ji B; Hwang K; Huang Y
    J Chem Phys; 2009 Jun; 130(21):215102. PubMed ID: 19508101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.