These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 15139925)
41. The Occurrence of Beer Spoilage Lactic Acid Bacteria in Craft Beer Production. Garofalo C; Osimani A; Milanović V; Taccari M; Aquilanti L; Clementi F J Food Sci; 2015 Dec; 80(12):M2845-52. PubMed ID: 26489032 [TBL] [Abstract][Full Text] [Related]
42. PCR Analysis Methods for Detection and Identification of Beer-Spoilage Lactic Acid Bacteria. Asano S; Shimokawa M; Suzuki K Methods Mol Biol; 2019; 1887():95-107. PubMed ID: 30506252 [TBL] [Abstract][Full Text] [Related]
43. Beer spoilage lactic acid bacteria from craft brewery microbiota: Microbiological quality and food safety. Rodríguez-Saavedra M; González de Llano D; Moreno-Arribas MV Food Res Int; 2020 Dec; 138(Pt A):109762. PubMed ID: 33292943 [TBL] [Abstract][Full Text] [Related]
44. Formation and accumulation of alpha-acids, beta-acids, desmethylxanthohumol, and xanthohumol during flowering of hops (Humulus lupulus L.). De Keukeleire J; Ooms G; Heyerick A; Roldan-Ruiz I; Van Bockstaele E; De Keukeleire D J Agric Food Chem; 2003 Jul; 51(15):4436-41. PubMed ID: 12848522 [TBL] [Abstract][Full Text] [Related]
45. Fermentation characteristics of exopolysaccharide-producing lactic acid bacteria from sourdough and assessment of the isolates for industrial potential. Jung SW; Kim WJ; Lee KG; Kim CW; Noh WS J Microbiol Biotechnol; 2008 Jul; 18(7):1266-73. PubMed ID: 18667855 [TBL] [Abstract][Full Text] [Related]
46. Phenotypic characterization of lactic acid bacteria from sourdoughs for Altamura bread produced in Apulia (Southern Italy). Ricciardi A; Parente E; Piraino P; Paraggio M; Romano P Int J Food Microbiol; 2005 Jan; 98(1):63-72. PubMed ID: 15617801 [TBL] [Abstract][Full Text] [Related]
47. Application of a bioluminescence method for the beer industry: sensitivity of MicroStar-RMDS for detecting beer-spoilage bacteria. Rapid Microbe Detection System. Takahashi T; Nakakita Y; Watari J; Shinotsuka K Biosci Biotechnol Biochem; 2000 May; 64(5):1032-7. PubMed ID: 10879474 [TBL] [Abstract][Full Text] [Related]
48. Safety properties and molecular strain typing of lactic acid bacteria from slightly fermented sausages. Aymerich T; Martín B; Garriga M; Vidal-Carou MC; Bover-Cid S; Hugas M J Appl Microbiol; 2006; 100(1):40-9. PubMed ID: 16405683 [TBL] [Abstract][Full Text] [Related]
49. Screening and selection of lactic acid bacteria strains suitable for ensiling grass. Saarisalo E; Skyttä E; Haikara A; Jalava T; Jaakkola S J Appl Microbiol; 2007 Feb; 102(2):327-36. PubMed ID: 17241337 [TBL] [Abstract][Full Text] [Related]
50. Inhibition of uropathogens by lactic acid bacteria isolated from dairy foods and cow's intestine in western Nigeria. Ayeni FA; Adeniyi BA; Ogunbanwo ST; Tabasco R; Paarup T; Peláez C; Requena T Arch Microbiol; 2009 Aug; 191(8):639-48. PubMed ID: 19529917 [TBL] [Abstract][Full Text] [Related]
51. Biodiversity of lactic acid bacteria in French wheat sourdough as determined by molecular characterization using species-specific PCR. Robert H; Gabriel V; Fontagné-Faucher C Int J Food Microbiol; 2009 Sep; 135(1):53-9. PubMed ID: 19651455 [TBL] [Abstract][Full Text] [Related]
52. Lactic acid bacteria with potential to eliminate fungal spoilage in foods. Rouse S; Harnett D; Vaughan A; van Sinderen D J Appl Microbiol; 2008 Mar; 104(3):915-23. PubMed ID: 17976175 [TBL] [Abstract][Full Text] [Related]
53. Food phenolics and lactic acid bacteria. Rodríguez H; Curiel JA; Landete JM; de las Rivas B; López de Felipe F; Gómez-Cordovés C; Mancheño JM; Muñoz R Int J Food Microbiol; 2009 Jun; 132(2-3):79-90. PubMed ID: 19419788 [TBL] [Abstract][Full Text] [Related]
54. Antimicrobial activity of nisin against Oenococcus oeni and other wine bacteria. Rojo-Bezares B; Sáenz Y; Zarazaga M; Torres C; Ruiz-Larrea F Int J Food Microbiol; 2007 May; 116(1):32-6. PubMed ID: 17320991 [TBL] [Abstract][Full Text] [Related]
55. Purification and partial characterization of an antigen specific to Lactobacillus brevis strains with beer spoilage activity. Yasui T; Yoda K FEMS Microbiol Lett; 1997 Jun; 151(2):169-76. PubMed ID: 9228750 [TBL] [Abstract][Full Text] [Related]
56. Molecular cloning of a putative divalent-cation transporter gene as a new genetic marker for the identification of Lactobacillus brevis strains capable of growing in beer. Hayashi N; Ito M; Horiike S; Taguchi H Appl Microbiol Biotechnol; 2001 May; 55(5):596-603. PubMed ID: 11414327 [TBL] [Abstract][Full Text] [Related]
57. Resistance to antimicrobial agents in lactobacilli isolated from caper fermentations. Pérez Pulido R; Omar NB; Lucas R; Abriouel H; Martínez Cañamero M; Gálvez A Antonie Van Leeuwenhoek; 2005; 88(3-4):277-81. PubMed ID: 16284934 [TBL] [Abstract][Full Text] [Related]
58. Which lactic acid bacteria are responsible for histamine production in wine? Landete JM; Ferrer S; Pardo I J Appl Microbiol; 2005; 99(3):580-6. PubMed ID: 16108800 [TBL] [Abstract][Full Text] [Related]
59. Inactivation kinetics of beer spoilage bacteria (Lactobacillus brevis, Lactobacillus casei, and Pediococcus damnosus) during acid washing of brewing yeast. Munford ARG; Chaves RD; Sant'Ana AS Food Microbiol; 2020 Oct; 91():103513. PubMed ID: 32539960 [TBL] [Abstract][Full Text] [Related]
60. Succession of dominant and antagonistic lactic acid bacteria in fermented cucumber: insights from a PCR-based approach. Singh AK; Ramesh A Food Microbiol; 2008 Apr; 25(2):278-87. PubMed ID: 18206770 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]