BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

720 related articles for article (PubMed ID: 15140910)

  • 1. Controlling human upright posture: velocity information is more accurate than position or acceleration.
    Jeka J; Kiemel T; Creath R; Horak F; Peterka R
    J Neurophysiol; 2004 Oct; 92(4):2368-79. PubMed ID: 15140910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diabetic neuropathy and surface sway-referencing disrupt somatosensory information for postural stability in stance.
    Horak FB; Dickstein R; Peterka RJ
    Somatosens Mot Res; 2002; 19(4):316-26. PubMed ID: 12590833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EquiTest modification with shank and hip angle measurements: differences with age among normal subjects.
    Speers RA; Shepard NT; Kuo AD
    J Vestib Res; 1999; 9(6):435-44. PubMed ID: 10639028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multisensory fusion and the stochastic structure of postural sway.
    Kiemel T; Oie KS; Jeka JJ
    Biol Cybern; 2002 Oct; 87(4):262-77. PubMed ID: 12386742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic regulation of sensorimotor integration in human postural control.
    Peterka RJ; Loughlin PJ
    J Neurophysiol; 2004 Jan; 91(1):410-23. PubMed ID: 13679407
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of sway-referenced visual and somatosensory inputs on human head movement and postural patterns during stance.
    Di Fabio RP; Anderson JH
    J Vestib Res; 1993; 3(4):409-17. PubMed ID: 8275274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Importance of body sway velocity information in controlling ankle extensor activities during quiet stance.
    Masani K; Popovic MR; Nakazawa K; Kouzaki M; Nozaki D
    J Neurophysiol; 2003 Dec; 90(6):3774-82. PubMed ID: 12944529
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of diminished and conflicting sensory information on balance in patients with cerebellar deficits.
    Gatev P; Thomas S; Lou JS; Lim M; Hallett M
    Mov Disord; 1996 Nov; 11(6):654-64. PubMed ID: 8914091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An optimal state estimation model of sensory integration in human postural balance.
    Kuo AD
    J Neural Eng; 2005 Sep; 2(3):S235-49. PubMed ID: 16135887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Athletic skill level is reflected in body sway: a test case for accelometry in combination with stochastic dynamics.
    Lamoth CJ; van Lummel RC; Beek PJ
    Gait Posture; 2009 Jun; 29(4):546-51. PubMed ID: 19138522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The balance control of bilateral peripheral vestibular loss subjects and its improvement with auditory prosthetic feedback.
    Hegeman J; Honegger F; Kupper M; Allum JH
    J Vestib Res; 2005; 15(2):109-17. PubMed ID: 15951624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stimulus-dependent changes in the vestibular contribution to human postural control.
    Cenciarini M; Peterka RJ
    J Neurophysiol; 2006 May; 95(5):2733-50. PubMed ID: 16467429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Postural effects of the scaled display of visual foot center of pressure feedback under different somatosensory conditions at the foot and the ankle.
    Vuillerme N; Bertrand R; Pinsault N
    Arch Phys Med Rehabil; 2008 Oct; 89(10):2034-6. PubMed ID: 18929035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A multisensory posture control model of human upright stance.
    Mergner T; Maurer C; Peterka RJ
    Prog Brain Res; 2003; 142():189-201. PubMed ID: 12693262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Balance sensory organization in children with profound hearing loss and cochlear implants.
    Suarez H; Angeli S; Suarez A; Rosales B; Carrera X; Alonso R
    Int J Pediatr Otorhinolaryngol; 2007 Apr; 71(4):629-37. PubMed ID: 17275927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of human ankle muscle vibration on posture and balance during adaptive locomotion.
    Sorensen KL; Hollands MA; Patla E
    Exp Brain Res; 2002 Mar; 143(1):24-34. PubMed ID: 11907687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of the posture control system under fixed and sway-referenced support conditions.
    Ishida A; Imai S; Fukuoka Y
    IEEE Trans Biomed Eng; 1997 May; 44(5):331-6. PubMed ID: 9125817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of dynamic visual environments on postural sway in the elderly.
    Borger LL; Whitney SL; Redfern MS; Furman JM
    J Vestib Res; 1999; 9(3):197-205. PubMed ID: 10436473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonlinear dynamics of human postural sway during upright stance.
    Stambolieva K; Popivanov D; Grigorova V
    Acta Physiol Pharmacol Bulg; 2001; 26(3):159-63. PubMed ID: 11695530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The ability to voluntarily control sway reflects the difficulty of the standing task.
    Reynolds RF
    Gait Posture; 2010 Jan; 31(1):78-81. PubMed ID: 19819148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.