BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 15141149)

  • 1. Reconstructing population exposures from dose biomarkers: inhalation of trichloroethylene (TCE) as a case study.
    Sohn MD; McKone TE; Blancato JN
    J Expo Anal Environ Epidemiol; 2004 May; 14(3):204-13. PubMed ID: 15141149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trichloroethylene cancer risk: simplified calculation of PBPK-based MCLs for cytotoxic end points.
    Bogen KT; Gold LS
    Regul Toxicol Pharmacol; 1997 Feb; 25(1):26-42. PubMed ID: 9056499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dose-based duration adjustments for the effects of inhaled trichloroethylene on rat visual function.
    Boyes WK; Bercegeay M; Ali JS; Krantz T; McGee J; Evans M; Raymer JH; Bushnell PJ; Simmons JE
    Toxicol Sci; 2003 Nov; 76(1):121-30. PubMed ID: 12915717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a screening approach to interpret human biomonitoring data on volatile organic compounds: reverse dosimetry on biomonitoring data for trichloroethylene.
    Liao KH; Tan YM; Clewell HJ
    Risk Anal; 2007 Oct; 27(5):1223-36. PubMed ID: 18076492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of an updated PBPK model for trichloroethylene and metabolites in mice, and its application to discern the role of oxidative metabolism in TCE-induced hepatomegaly.
    Evans MV; Chiu WA; Okino MS; Caldwell JC
    Toxicol Appl Pharmacol; 2009 May; 236(3):329-40. PubMed ID: 19249323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of various exposure scenarios on the biological monitoring of organic solvents in alveolar air. II. 1,1,1-Trichloroethane and trichloroethylene.
    Laparé S; Tardif R; Brodeur J
    Int Arch Occup Environ Health; 1995; 67(6):375-94. PubMed ID: 8567088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Initial uptake kinetics in human skin exposed to dilute aqueous trichloroethylene in vitro.
    Bogen KT; Keating GA; Meissner S; Vogel JS
    J Expo Anal Environ Epidemiol; 1998; 8(2):253-71. PubMed ID: 9577754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterizing uncertainty and population variability in the toxicokinetics of trichloroethylene and metabolites in mice, rats, and humans using an updated database, physiologically based pharmacokinetic (PBPK) model, and Bayesian approach.
    Chiu WA; Okino MS; Evans MV
    Toxicol Appl Pharmacol; 2009 Nov; 241(1):36-60. PubMed ID: 19660485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconstructing week-long exposures to volatile organic compounds using physiologically based pharmacokinetic models.
    Roy A; Georgopoulos PG
    J Expo Anal Environ Epidemiol; 1998; 8(3):407-22. PubMed ID: 9679220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Duration adjustment of acute exposure guideline level values for trichloroethylene using a physiologically-based pharmacokinetic model.
    Boyes WK; Evans MV; Eklund C; Janssen P; Simmons JE
    Risk Anal; 2005 Jun; 25(3):677-86. PubMed ID: 16022699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In silico toxicology: simulating interaction thresholds for human exposure to mixtures of trichloroethylene, tetrachloroethylene, and 1,1,1-trichloroethane.
    Dobrev ID; Andersen ME; Yang RS
    Environ Health Perspect; 2002 Oct; 110(10):1031-9. PubMed ID: 12361929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of systems biology response and environmental exposure level on between-subject variability in breath and blood biomarkers.
    Pleil JD
    Biomarkers; 2009 Dec; 14(8):560-71. PubMed ID: 19740040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining physiologically based pharmacokinetic modeling with Monte Carlo simulation to derive an acute inhalation guidance value for trichloroethylene.
    Simon TW
    Regul Toxicol Pharmacol; 1997 Dec; 26(3):257-70. PubMed ID: 9441916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exposure of Danish workers to trichloroethylene, 1947-1989.
    Raaschou-Nielsen O; Hansen J; Thomsen BL; Johansen I; Lipworth L; McLaughlin JK; Olsen JH
    Appl Occup Environ Hyg; 2002 Oct; 17(10):693-703. PubMed ID: 12363210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconstructing exposures from small samples using physiologically based pharmacokinetic models and multiple biomarkers.
    Mosquin PL; Licata AC; Liu B; Sumner SC; Okino MS
    J Expo Sci Environ Epidemiol; 2009 Mar; 19(3):284-97. PubMed ID: 18461092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toxicological review of male reproductive effects and trichloroethylene exposure: assessing the relevance to human male reproductive health.
    Lamb JC; Hentz KL
    Reprod Toxicol; 2006 Nov; 22(4):557-63. PubMed ID: 16938429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of Markov Chain Monte Carlo analysis with a physiologically-based pharmacokinetic model of methylmercury to estimate exposures in US women of childbearing age.
    Allen BC; Hack CE; Clewell HJ
    Risk Anal; 2007 Aug; 27(4):947-59. PubMed ID: 17958503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trichloroethylene and ocular malformations: analysis of extant literature.
    Williams AL; DeSesso JM
    Int J Toxicol; 2008; 27(1):81-95. PubMed ID: 18293215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pharmacokinetic modeling of trichloroethylene and trichloroacetic acid in humans.
    Allen BC; Fisher JW
    Risk Anal; 1993 Feb; 13(1):71-86. PubMed ID: 8451462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bayesian population analysis of a harmonized physiologically based pharmacokinetic model of trichloroethylene and its metabolites.
    Hack CE; Chiu WA; Jay Zhao Q; Clewell HJ
    Regul Toxicol Pharmacol; 2006 Oct; 46(1):63-83. PubMed ID: 16889879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.