BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 15141835)

  • 1. Nitric oxide inhibition after Toxoplasma gondii infection of chicken macrophage cell lines.
    Guillermo LV; DaMatta RA
    Poult Sci; 2004 May; 83(5):776-82. PubMed ID: 15141835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduced expression of the inducible nitric oxide synthase after infection with Toxoplasma gondii facilitates parasite replication in activated murine macrophages.
    Lüder CG; Algner M; Lang C; Bleicher N; Gross U
    Int J Parasitol; 2003 Jul; 33(8):833-44. PubMed ID: 12865083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toxoplasma gondii infection of activated J774-A1 macrophages causes inducible nitric oxide synthase degradation by the proteasome pathway.
    Padrão Jda C; Cabral GR; da Silva Mde F; Seabra SH; DaMatta RA
    Parasitol Int; 2014 Oct; 63(5):659-63. PubMed ID: 24845536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toxoplasma gondii partially inhibits nitric oxide production of activated murine macrophages.
    Seabra SH; de Souza W; DaMatta RA
    Exp Parasitol; 2002 Jan; 100(1):62-70. PubMed ID: 11971655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of nitric oxide production of activated mice peritoneal macrophages is independent of the Toxoplasma gondii strain.
    Damasceno-Sá JC; de Souza FS; Dos Santos TAT; de Oliveira FC; da Silva MFS; Dias RRF; de Souza W; Arnholdt ACV; Seabra SH; DaMatta RA
    Mem Inst Oswaldo Cruz; 2021; 116():e200417. PubMed ID: 33729328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterisation of susceptibility of chicken macrophages to infection with Toxoplasma gondii of type II and III strains.
    Malkwitz I; Berndt A; Daugschies A; Bangoura B
    Exp Parasitol; 2018 Apr; 187():22-29. PubMed ID: 29518451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heat shock protein 70 is a potential virulence factor in murine toxoplasma infection via immunomodulation of host NF-kappa B and nitric oxide.
    Dobbin CA; Smith NC; Johnson AM
    J Immunol; 2002 Jul; 169(2):958-65. PubMed ID: 12097402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential expression of inducible nitric oxide synthase is associated with differential Toll-like receptor-4 expression in chicken macrophages from different genetic backgrounds.
    Dil N; Qureshi MA
    Vet Immunol Immunopathol; 2002 Jan; 84(3-4):191-207. PubMed ID: 11777534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activated microglia inhibit multiplication of Toxoplasma gondii via a nitric oxide mechanism.
    Chao CC; Anderson WR; Hu S; Gekker G; Martella A; Peterson PK
    Clin Immunol Immunopathol; 1993 May; 67(2):178-83. PubMed ID: 8519093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitric oxide is not involved in the killing of Trypanosoma cruzi by chicken macrophages.
    DaMatta RA; Seabra SH; Manhães L; de Souza W
    Parasitol Res; 2000 Mar; 86(3):239-43. PubMed ID: 10726995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toxoplasma gondii exposes phosphatidylserine inducing a TGF-beta1 autocrine effect orchestrating macrophage evasion.
    Seabra SH; de Souza W; Damatta RA
    Biochem Biophys Res Commun; 2004 Nov; 324(2):744-52. PubMed ID: 15474490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphatidylserine exposure by Toxoplasma gondii is fundamental to balance the immune response granting survival of the parasite and of the host.
    Santos TA; Portes Jde A; Damasceno-Sá JC; Caldas LA; Souza Wd; Damatta RA; Seabra SH
    PLoS One; 2011; 6(11):e27867. PubMed ID: 22140476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Progesterone fails to modulate Toxoplasma gondii replication in the RAW 264.7 murine macrophage cell line.
    Gay-Andrieu F; Cozon GJ; Ferrandiz J; Peyron F
    Parasite Immunol; 2002 Apr; 24(4):173-8. PubMed ID: 12010482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of inducible nitric oxide synthase exacerbates chronic cerebral toxoplasmosis in Toxoplasma gondii-susceptible C57BL/6 mice but does not reactivate the latent disease in T. gondii-resistant BALB/c mice.
    Schlüter D; Deckert-Schlüter M; Lorenz E; Meyer T; Röllinghoff M; Bogdan C
    J Immunol; 1999 Mar; 162(6):3512-8. PubMed ID: 10092808
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Host-pathogen interaction in Toxoplasma gondii-infected mixed chicken blood cell cultures.
    Hiob L; Berndt A; Daugschies A; Bangoura B
    Parasitol Res; 2019 May; 118(5):1479-1491. PubMed ID: 30798368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interleukin-4 (IL-4) may regulate alternative activation of macrophage-like cells in chickens: A sequential study using novel and specific neutralizing monoclonal antibodies against chicken IL-4.
    Chaudhari AA; Kim WH; Lillehoj HS
    Vet Immunol Immunopathol; 2018 Nov; 205():72-82. PubMed ID: 30459004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. IL-13 pre-treatment of murine peritoneal macrophages increases their anti-Toxoplasma gondii activity induced by lipopolysaccharides.
    Authier H; Cassaing S; Bans V; Batigne P; Bessières MH; Pipy B
    Int J Parasitol; 2008 Mar; 38(3-4):341-52. PubMed ID: 17923133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The mechanism of interferon-gamma induced anti Toxoplasma gondii by indoleamine 2,3-dioxygenase and/or inducible nitric oxide synthase vary among tissues.
    Fujigaki S; Takemura M; Hamakawa H; Seishima M; Saito K
    Adv Exp Med Biol; 2003; 527():97-103. PubMed ID: 15206721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chicken line-dependent mortality after experimental infection with three type IIxIII recombinant Toxoplasma gondii clones.
    Schares G; Herrmann DC; Maksimov P; Matzkeit B; Conraths FJ; Moré G; Preisinger R; Weigend S
    Exp Parasitol; 2017 Sep; 180():101-111. PubMed ID: 27913108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell invasion and strain dependent induction of suppressor of cytokine signaling-1 by Toxoplasma gondii.
    Stutz A; Kessler H; Kaschel ME; Meissner M; Dalpke AH
    Immunobiology; 2012 Jan; 217(1):28-36. PubMed ID: 22015046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.