BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 15141956)

  • 101. Distinctiveness of genes contributing to growth of Pseudomonas syringae in diverse host plant species.
    Helmann TC; Deutschbauer AM; Lindow SE
    PLoS One; 2020; 15(9):e0239998. PubMed ID: 32986776
    [TBL] [Abstract][Full Text] [Related]  

  • 102. Use of an intergenic region in Pseudomonas syringae pv. syringae B728a for site-directed genomic marking of bacterial strains for field experiments.
    Hirano SS; Willis DK; Clayton MK; Upper CD
    Appl Environ Microbiol; 2001 Aug; 67(8):3735-8. PubMed ID: 11472957
    [TBL] [Abstract][Full Text] [Related]  

  • 103. Mangotoxin production of Pseudomonas syringae pv. syringae is regulated by MgoA.
    CarriĆ³n VJ; van der Voort M; Arrebola E; GutiĆ©rrez-Barranquero JA; de Vicente A; Raaijmakers JM; Cazorla FM
    BMC Microbiol; 2014 Feb; 14():46. PubMed ID: 24555804
    [TBL] [Abstract][Full Text] [Related]  

  • 104. Antisocial luxO Mutants Provide a Stationary-Phase Survival Advantage in Vibrio fischeri ES114.
    Kimbrough JH; Stabb EV
    J Bacteriol; 2015 Dec; 198(4):673-87. PubMed ID: 26644435
    [TBL] [Abstract][Full Text] [Related]  

  • 105. Characterization of quorum sensing-controlled transcriptional regulator MarR and Rieske (2Fe-2S) cluster-containing protein (Orf5), which are involved in resistance to environmental stresses in Pseudomonas syringae pv. tabaci 6605.
    Taguchi F; Inoue Y; Suzuki T; Inagaki Y; Yamamoto M; Toyoda K; Noutoshi Y; Shiraishi T; Ichinose Y
    Mol Plant Pathol; 2015 May; 16(4):376-87. PubMed ID: 25155081
    [TBL] [Abstract][Full Text] [Related]  

  • 106. The hygroscopic biosurfactant syringafactin produced by Pseudomonas syringae enhances fitness on leaf surfaces during fluctuating humidity.
    Burch AY; Zeisler V; Yokota K; Schreiber L; Lindow SE
    Environ Microbiol; 2014 Jul; 16(7):2086-98. PubMed ID: 24571678
    [TBL] [Abstract][Full Text] [Related]  

  • 107. Contact-dependent traits in Pseudomonas syringae B728a.
    Hernandez MN; Lindow SE
    PLoS One; 2021; 16(2):e0241655. PubMed ID: 33571230
    [TBL] [Abstract][Full Text] [Related]  

  • 108. A novel degenerated primer pair detects diverse genes of acyl homoserine lactone synthetase in Rhizobiaceae family.
    Huang Y; Zeng Y; Yu Z
    Curr Microbiol; 2013 Aug; 67(2):183-7. PubMed ID: 23483309
    [TBL] [Abstract][Full Text] [Related]  

  • 109. Cost of cell-cell signalling in Pseudomonas aeruginosa: why it can pay to be signal-blind.
    Haas D
    Nat Rev Microbiol; 2006 Jul; 4(7):562; author reply 562. PubMed ID: 16878369
    [No Abstract]   [Full Text] [Related]  

  • 110. Glycine betaine catabolism contributes to Pseudomonas syringae tolerance to hyperosmotic stress by relieving betaine-mediated suppression of compatible solute synthesis.
    Li S; Yu X; Beattie GA
    J Bacteriol; 2013 May; 195(10):2415-23. PubMed ID: 23524610
    [TBL] [Abstract][Full Text] [Related]  

  • 111. The widespread plant-colonizing bacterial species Pseudomonas syringae detects and exploits an extracellular pool of choline in hosts.
    Chen C; Li S; McKeever DR; Beattie GA
    Plant J; 2013 Sep; 75(6):891-902. PubMed ID: 23763788
    [TBL] [Abstract][Full Text] [Related]  

  • 112. Characteristics of Insertional Mutants of Pseudomonas syringae with Reduced Epiphytic Fitness.
    Lindow SE; Andersen G; Beattie GA
    Appl Environ Microbiol; 1993 May; 59(5):1593-601. PubMed ID: 16348939
    [TBL] [Abstract][Full Text] [Related]  

  • 113. Survival, Growth, and Localization of Epiphytic Fitness Mutants of Pseudomonas syringae on Leaves.
    Beattie GA; Lindow SE
    Appl Environ Microbiol; 1994 Oct; 60(10):3790-8. PubMed ID: 16349417
    [TBL] [Abstract][Full Text] [Related]  

  • 114. RecTE(Psy)-mediated recombineering in Pseudomonas syringae.
    Swingle B
    Methods Mol Biol; 2014; 1114():3-10. PubMed ID: 24557893
    [TBL] [Abstract][Full Text] [Related]  

  • 115. Novel method for identifying bacterial mutants with reduced epiphytic fitness.
    Lindow SE
    Appl Environ Microbiol; 1993 May; 59(5):1586-92. PubMed ID: 16348938
    [TBL] [Abstract][Full Text] [Related]  

  • 116. Global regulation by gidA in Pseudomonas syringae.
    Kinscherf TG; Willis DK
    J Bacteriol; 2002 Apr; 184(8):2281-6. PubMed ID: 11914360
    [TBL] [Abstract][Full Text] [Related]  

  • 117. Involvement of rppH in thermoregulation in Pseudomonas syringae.
    Hockett KL; Ionescu M; Lindow SE
    J Bacteriol; 2014 Jun; 196(12):2313-22. PubMed ID: 24727227
    [TBL] [Abstract][Full Text] [Related]  

  • 118. The role of a periplasmic gluconolactonase (PpgL)-like protein in Pseudomonas syringae pv. syringae B728a.
    Tarighi S; Taheri P
    World J Microbiol Biotechnol; 2011 Jun; 27(6):1303-11. PubMed ID: 25187129
    [TBL] [Abstract][Full Text] [Related]  

  • 119. Novel high-throughput detection method to assess bacterial surfactant production.
    Burch AY; Shimada BK; Browne PJ; Lindow SE
    Appl Environ Microbiol; 2010 Aug; 76(16):5363-72. PubMed ID: 20562275
    [TBL] [Abstract][Full Text] [Related]  

  • 120. Flagellar Motility Confers Epiphytic Fitness Advantages upon Pseudomonas syringae.
    Haefele DM; Lindow SE
    Appl Environ Microbiol; 1987 Oct; 53(10):2528-33. PubMed ID: 16347469
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.