BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

495 related articles for article (PubMed ID: 15142598)

  • 1. Urea potentiometric biosensor based on modified electrodes with urease immobilized on polyethylenimine films.
    Lakard B; Herlem G; Lakard S; Antoniou A; Fahys B
    Biosens Bioelectron; 2004 Jul; 19(12):1641-7. PubMed ID: 15142598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Urea biosensor based on PANi(urease)-Nafion/Au composite electrode.
    Luo YC; Do JS
    Biosens Bioelectron; 2004 Jul; 20(1):15-23. PubMed ID: 15142572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amperometric glucose biosensor based on layer-by-layer assembly of multilayer films composed of chitosan, gold nanoparticles and glucose oxidase modified Pt electrode.
    Wu BY; Hou SH; Yin F; Li J; Zhao ZX; Huang JD; Chen Q
    Biosens Bioelectron; 2007 Jan; 22(6):838-44. PubMed ID: 16675215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insulator semiconductor structures coated with biodegradable latexes as encapsulation matrix for urease.
    Barhoumi H; Maaref A; Rammah M; Martelet C; Jaffrezic-Renault N; Mousty C; Cosnier S; Perez E; Rico-Lattes I
    Biosens Bioelectron; 2005 May; 20(11):2318-23. PubMed ID: 15797333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ionic effect investigation of a potentiometric sensor for urea and surface morphology observation of entrapped urease/polypyrrole matrix.
    Syu MJ; Chang YS
    Biosens Bioelectron; 2009 Apr; 24(8):2671-7. PubMed ID: 19237276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sonochemically fabricated microelectrode arrays for biosensors--part II. Modification with a polysiloxane coating.
    Myler S; Davis F; Collyer SD; Higson SP
    Biosens Bioelectron; 2004 Sep; 20(2):408-12. PubMed ID: 15308248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immobilization and direct electrochemistry of glucose oxidase on a tetragonal pyramid-shaped porous ZnO nanostructure for a glucose biosensor.
    Dai Z; Shao G; Hong J; Bao J; Shen J
    Biosens Bioelectron; 2009 Jan; 24(5):1286-91. PubMed ID: 18774704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyaniline-uricase biosensor prepared with template process.
    Kan J; Pan X; Chen C
    Biosens Bioelectron; 2004 Jul; 19(12):1635-40. PubMed ID: 15142597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-wall carbon nanotube-based voltammetric sensor and biosensor.
    Xu Z; Chen X; Qu X; Jia J; Dong S
    Biosens Bioelectron; 2004 Oct; 20(3):579-84. PubMed ID: 15494242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acetylcholinesterase-based biosensor electrodes for organophosphate pesticide detection. I. Modification of carbon surface for immobilization of acetylcholinesterase.
    Vakurov A; Simpson CE; Daly CL; Gibson TD; Millner PA
    Biosens Bioelectron; 2004 Dec; 20(6):1118-25. PubMed ID: 15556357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quaternary ammonium functionalized clay film electrodes modified with polyphenol oxidase for the sensitive detection of catechol.
    Mbouguen JK; Ngameni E; Walcarius A
    Biosens Bioelectron; 2007 Sep; 23(2):269-75. PubMed ID: 17537626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polypyrrole nanotube array sensor for enhanced adsorption of glucose oxidase in glucose biosensors.
    Ekanayake EM; Preethichandra DM; Kaneto K
    Biosens Bioelectron; 2007 Aug; 23(1):107-13. PubMed ID: 17475472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A carbon fiber microelectrode-based third-generation biosensor for superoxide anion.
    Tian Y; Mao L; Okajima T; Ohsaka T
    Biosens Bioelectron; 2005 Oct; 21(4):557-64. PubMed ID: 16202868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preliminary investigations on a new disposable potentiometric biosensor for uric acid.
    Liao CW; Chou JC; Sun TP; Hsiung SK; Hsieh JH
    IEEE Trans Biomed Eng; 2006 Jul; 53(7):1401-8. PubMed ID: 16830944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Urea potentiometric enzymatic biosensor based on charged biopolymers and electrodeposited polyaniline.
    Lakard B; Magnin D; Deschaume O; Vanlancker G; Glinel K; Demoustier-Champagne S; Nysten B; Jonas AM; Bertrand P; Yunus S
    Biosens Bioelectron; 2011 Jun; 26(10):4139-45. PubMed ID: 21536421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sonochemically fabricated enzyme microelectrode arrays for the environmental monitoring of pesticides.
    Pritchard J; Law K; Vakurov A; Millner P; Higson SP
    Biosens Bioelectron; 2004 Nov; 20(4):765-72. PubMed ID: 15522591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The potential use of hydrazine as an alternative to peroxidase in a biosensor: comparison between hydrazine and HRP-based glucose sensors.
    Rahman MA; Won MS; Shim YB
    Biosens Bioelectron; 2005 Aug; 21(2):257-65. PubMed ID: 16023952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of different strategies for the development of amperometric biosensors for L-lactate.
    Prieto-Simón B; Fàbregas E; Hart A
    Biosens Bioelectron; 2007 May; 22(11):2663-8. PubMed ID: 17141496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of cholesterol biosensor based on immobilized cholesterol esterase and cholesterol oxidase on oxygen electrode for the determination of total cholesterol in food samples.
    Basu AK; Chattopadhyay P; Roychoudhuri U; Chakraborty R
    Bioelectrochemistry; 2007 May; 70(2):375-9. PubMed ID: 16814618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of amperometric biosensors fabricated by palladium sputtering, palladium electrodeposition and Nafion/carbon nanotube casting on screen-printed carbon electrodes.
    Lee CH; Wang SC; Yuan CJ; Wen MF; Chang KS
    Biosens Bioelectron; 2007 Jan; 22(6):877-84. PubMed ID: 16644200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.