BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 15142603)

  • 1. Catheter-based impedance measurements in the right atrium for continuously monitoring hematocrit and estimating blood viscosity changes; an in vivo feasibility study in swine.
    Pop GA; Chang ZY; Slager CJ; Kooij BJ; van Deel ED; Moraru L; Quak J; Meijer GC; Duncker DJ
    Biosens Bioelectron; 2004 Jul; 19(12):1685-93. PubMed ID: 15142603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On-line blood viscosity monitoring in vivo with a central venous catheter, using electrical impedance technique.
    Pop GA; Bisschops LL; Iliev B; Struijk PC; van der Hoeven JG; Hoedemaekers CW
    Biosens Bioelectron; 2013 Mar; 41():595-601. PubMed ID: 23089327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On-line electrical impedance measurement for monitoring blood viscosity during on-pump heart surgery.
    Pop GA; de Backer TL; de Jong M; Struijk PC; Moraru L; Chang Z; Goovaerts HG; Slager CJ; Bogers AJ
    Eur Surg Res; 2004; 36(5):259-65. PubMed ID: 15359088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Model-independent relationships between hematocrit, blood viscosity, and yield stress derived from Couette viscometry data.
    Yeow YL; Wickramasinghe SR; Leong YK; Han B
    Biotechnol Prog; 2002; 18(5):1068-75. PubMed ID: 12363359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of blood viscosity using a torsional oscillation viscometer and a rheometer.
    Travagli V; Zanardi I; Boschi L; Gabbrielli A; Mastronuzzi VA; Cappelli R; Forconi S
    Clin Hemorheol Microcirc; 2008; 38(2):65-74. PubMed ID: 18198407
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electric field penetration depth of myocardial surface catheters and the measurement of myocardial resistivity.
    Kottam A; Pearce JA
    Biomed Sci Instrum; 2004; 40():155-60. PubMed ID: 15133951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hemorheological correlates of fitness and unfitness in athletes: moving beyond the apparent "paradox of hematocrit"?
    Gaudard A; Varlet-Marie E; Bressolle F; Mercier J; Brun JF
    Clin Hemorheol Microcirc; 2003; 28(3):161-73. PubMed ID: 12775898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A commercial whole blood glucose biosensor with a low sensitivity to hematocrit based on an impregnated porous carbon electrode.
    Forrow NJ; Bayliff SW
    Biosens Bioelectron; 2005 Oct; 21(4):581-7. PubMed ID: 16202871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of the optimum level of electrode placement for the evaluation of absolute lung resistivity with the Mk3.5 EIT system.
    Nebuya S; Noshiro M; Yonemoto A; Tateno S; Brown BH; Smallwood RH; Milnes P
    Physiol Meas; 2006 May; 27(5):S129-37. PubMed ID: 16636404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An automated tube-type blood viscometer: validation studies.
    Alexy T; Wenby RB; Pais E; Goldstein LJ; Hogenauer W; Meiselman HJ
    Biorheology; 2005; 42(3):237-47. PubMed ID: 15894822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies of electrorheological properties of blood.
    Antonova N; Riha P
    Clin Hemorheol Microcirc; 2006; 35(1-2):19-29. PubMed ID: 16899902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hematocrit measurement by dielectric spectroscopy.
    Treo EF; Felice CJ; Tirado MC; Valentinuzzi ME; Cervantes DO
    IEEE Trans Biomed Eng; 2005 Jan; 52(1):124-7. PubMed ID: 15651572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of human uterine cervical electrical impedance measurements derived using two tetrapolar probes of different sizes.
    Gandhi SV; Walker DC; Brown BH; Anumba DO
    Biomed Eng Online; 2006 Nov; 5():62. PubMed ID: 17125510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pregnancy at high altitude: a hyperviscosity state.
    Kametas NA; Krampl E; McAuliffe F; Rampling MW; Nicolaides KH
    Acta Obstet Gynecol Scand; 2004 Jul; 83(7):627-33. PubMed ID: 15225186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of hematocrit and red cell deformability with whole body biological impedance.
    Varlet-Marie E; Aloulou I; Mercier J; Brun JF
    Clin Hemorheol Microcirc; 2010; 44(4):237-44. PubMed ID: 20571238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-invasive glucose monitoring in patients with diabetes: a novel system based on impedance spectroscopy.
    Caduff A; Dewarrat F; Talary M; Stalder G; Heinemann L; Feldman Y
    Biosens Bioelectron; 2006 Dec; 22(5):598-604. PubMed ID: 16524714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of two- and four-electrode techniques to characterize blood impedance for the frequency range of 100 Hz to 100 MHz.
    Chang ZY; Pop GM; Meijer GM
    IEEE Trans Biomed Eng; 2008 Mar; 55(3):1247-9. PubMed ID: 18334424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A percutaneous catheter-based system for the measurement of potential gradients applicable to the study of transthoracic defibrillation.
    Rosborough JP; Deno DC; Walker RG; Niemann JT
    Pacing Clin Electrophysiol; 2007 Feb; 30(2):166-74. PubMed ID: 17338711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blood fluidity and thermography in patients with diabetes mellitus and coronary artery disease in comparison to healthy subjects.
    Marcinkowska-GapiƄska A; Kowal P
    Clin Hemorheol Microcirc; 2006; 35(4):473-9. PubMed ID: 17148846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement of blood viscosity using a pressure-scanning capillary viscometer.
    Shin S; Ku Y; Park MS; Suh JS
    Clin Hemorheol Microcirc; 2004; 30(3-4):467-70. PubMed ID: 15258389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.