BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 15142743)

  • 1. Approaches to modeling crossbridges and calcium-dependent activation in cardiac muscle.
    Rice JJ; de Tombe PP
    Prog Biophys Mol Biol; 2004; 85(2-3):179-95. PubMed ID: 15142743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sarcomere mechanics in uniform and nonuniform cardiac muscle: a link between pump function and arrhythmias.
    Ter Keurs HE; Shinozaki T; Zhang YM; Wakayama Y; Sugai Y; Kagaya Y; Miura M; Boyden PA; Stuyvers BD; Landesberg A
    Ann N Y Acad Sci; 2008 Mar; 1123():79-95. PubMed ID: 18375580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sarcomere mechanics in uniform and non-uniform cardiac muscle: a link between pump function and arrhythmias.
    ter Keurs HE; Shinozaki T; Zhang YM; Zhang ML; Wakayama Y; Sugai Y; Kagaya Y; Miura M; Boyden PA; Stuyvers BD; Landesberg A
    Prog Biophys Mol Biol; 2008; 97(2-3):312-31. PubMed ID: 18394686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial nonuniformity of contraction causes arrhythmogenic Ca2+ waves in rat cardiac muscle.
    Ter Keurs HE; Wakayama Y; Miura M; Stuyvers BD; Boyden PA; Landesberg A
    Ann N Y Acad Sci; 2005 Jun; 1047():345-65. PubMed ID: 16093510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incorporation of myofilament activation mechanics into a lumped model of the human heart.
    Deserranno D; Kassemi M; Thomas JD
    Ann Biomed Eng; 2007 Mar; 35(3):321-36. PubMed ID: 17219084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards a molecular understanding of contractility.
    Rüegg JC
    Cardioscience; 1990 Sep; 1(3):163-8. PubMed ID: 2102805
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Length-dependent activation and auto-oscillation in skeletal myofibrils at partial activation by Ca2+.
    Shimamoto Y; Suzuki M; Ishiwata S
    Biochem Biophys Res Commun; 2008 Feb; 366(1):233-8. PubMed ID: 18061572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Length dependence of cardiac myofilament Ca(2+) sensitivity in the presence of substitute nucleoside triphosphates.
    Smith SH; Fuchs F
    J Mol Cell Cardiol; 2002 May; 34(5):547-54. PubMed ID: 12056858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cardiac myosin-binding protein C is required for complete relaxation in intact myocytes.
    Pohlmann L; Kröger I; Vignier N; Schlossarek S; Krämer E; Coirault C; Sultan KR; El-Armouche A; Winegrad S; Eschenhagen T; Carrier L
    Circ Res; 2007 Oct; 101(9):928-38. PubMed ID: 17823372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of Ca(2+)-signaling in cardiac myofilaments.
    Solaro RJ
    Med Sci Sports Exerc; 1991 Oct; 23(10):1145-8. PubMed ID: 1758291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Frank-Starling mechanism in vertebrate cardiac myocytes.
    Shiels HA; White E
    J Exp Biol; 2008 Jul; 211(Pt 13):2005-13. PubMed ID: 18552289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ca(2+)-dependence of passive properties of cardiac sarcomeres.
    Stuyvers BD; Miura M; ter Keurs HE
    Adv Exp Med Biol; 2000; 481():353-66; discussion 367-70. PubMed ID: 10987083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cross-bridge dependent cooperativity determines the cardiac force-length relationship.
    Levy C; Landesberg A
    J Mol Cell Cardiol; 2006 May; 40(5):639-47. PubMed ID: 16600291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A macroscopic ansatz to deduce the Hill relation.
    Günther M; Schmitt S
    J Theor Biol; 2010 Apr; 263(4):407-18. PubMed ID: 20045704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of the Frank-Starling law--a simulation study with a novel cardiac muscle contraction model that includes titin and troponin I.
    Schneider NS; Shimayoshi T; Amano A; Matsuda T
    J Mol Cell Cardiol; 2006 Sep; 41(3):522-36. PubMed ID: 16860336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A dominant role of cardiac molecular motors in the intrinsic regulation of ventricular ejection and relaxation.
    Hinken AC; Solaro RJ
    Physiology (Bethesda); 2007 Apr; 22():73-80. PubMed ID: 17420299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heart muscle: mathematical modelling of the mechanical activity and modelling of mechanochemical uncoupling.
    Katsnelson LB; Izakov VYa ; Markhasin VS
    Gen Physiol Biophys; 1990 Jun; 9(3):219-43. PubMed ID: 2394370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arrhythmogenic Ca(2+) release from cardiac myofilaments.
    Ter Keurs HE; Wakayama Y; Miura M; Shinozaki T; Stuyvers BD; Boyden PA; Landesberg A
    Prog Biophys Mol Biol; 2006; 90(1-3):151-71. PubMed ID: 16120452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Contribution of cooperative mechanisms of the thin filament activation to the myocardium contractile function. Assessment by a mathematical model].
    Kantsel'son LB; Sul'man TB; Solov'eva OE; Markhasin VS
    Biofizika; 2009; 54(1):53-61. PubMed ID: 19334633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computer system modelling muscle work.
    Skubiszak L; Kowalczyk L
    Technol Health Care; 1998 Sep; 6(2-3):139-49. PubMed ID: 9839860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.