These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 15142745)

  • 41. Stochastic simulations on a model of circadian rhythm generation.
    Miura S; Shimokawa T; Nomura T
    Biosystems; 2008; 93(1-2):133-40. PubMed ID: 18585851
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Green's-function reaction dynamics: a particle-based approach for simulating biochemical networks in time and space.
    van Zon JS; ten Wolde PR
    J Chem Phys; 2005 Dec; 123(23):234910. PubMed ID: 16392952
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Chapter 23: Stochastic modeling methods in cell biology.
    Sun SX; Lan G; Atilgan E
    Methods Cell Biol; 2008; 89():601-21. PubMed ID: 19118692
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An efficient and exact stochastic simulation method to analyze rare events in biochemical systems.
    Kuwahara H; Mura I
    J Chem Phys; 2008 Oct; 129(16):165101. PubMed ID: 19045316
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Efficient step size selection for the tau-leaping simulation method.
    Cao Y; Gillespie DT; Petzold LR
    J Chem Phys; 2006 Jan; 124(4):044109. PubMed ID: 16460151
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Sequential estimation for prescribed statistical accuracy in stochastic simulation of biological systems.
    Sandmann W
    Math Biosci; 2009 Sep; 221(1):43-53. PubMed ID: 19576907
    [TBL] [Abstract][Full Text] [Related]  

  • 47. On the complete determination of biological systems.
    Selinger DW; Wright MA; Church GM
    Trends Biotechnol; 2003 Jun; 21(6):251-4. PubMed ID: 12788544
    [TBL] [Abstract][Full Text] [Related]  

  • 48. An equation-free probabilistic steady-state approximation: dynamic application to the stochastic simulation of biochemical reaction networks.
    Salis H; Kaznessis YN
    J Chem Phys; 2005 Dec; 123(21):214106. PubMed ID: 16356038
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Stochastic reduction method for biological chemical kinetics using time-scale separation.
    Pahlajani CD; Atzberger PJ; Khammash M
    J Theor Biol; 2011 Mar; 272(1):96-112. PubMed ID: 21126524
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Optimal observability of sustained stochastic competitive inhibition oscillations at organellar volumes.
    Davis KL; Roussel MR
    FEBS J; 2006 Jan; 273(1):84-95. PubMed ID: 16367750
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Stochastic P systems and the simulation of biochemical processes with dynamic compartments.
    Spicher A; Michel O; Cieslak M; Giavitto JL; Prusinkiewicz P
    Biosystems; 2008 Mar; 91(3):458-72. PubMed ID: 17728055
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Building with a scaffold: emerging strategies for high- to low-level cellular modeling.
    Ideker T; Lauffenburger D
    Trends Biotechnol; 2003 Jun; 21(6):255-62. PubMed ID: 12788545
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Predator-prey dynamics in P systems ruled by metabolic algorithm.
    Fontana F; Manca V
    Biosystems; 2008 Mar; 91(3):545-57. PubMed ID: 17720307
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Molecular change signal-to-noise criteria for interpreting experiments involving exposure of biological systems to weakly interacting electromagnetic fields.
    Vaughan TE; Weaver JC
    Bioelectromagnetics; 2005 May; 26(4):305-22. PubMed ID: 15832332
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A constant-time kinetic Monte Carlo algorithm for simulation of large biochemical reaction networks.
    Slepoy A; Thompson AP; Plimpton SJ
    J Chem Phys; 2008 May; 128(20):205101. PubMed ID: 18513044
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Path ensembles and path sampling in nonequilibrium stochastic systems.
    Harland B; Sun SX
    J Chem Phys; 2007 Sep; 127(10):104103. PubMed ID: 17867733
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Accelerated stochastic simulation of the stiff enzyme-substrate reaction.
    Cao Y; Gillespie DT; Petzold LR
    J Chem Phys; 2005 Oct; 123(14):144917. PubMed ID: 16238434
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Automatic identification of model reductions for discrete stochastic simulation.
    Wu S; Fu J; Li H; Petzold L
    J Chem Phys; 2012 Jul; 137(3):034106. PubMed ID: 22830682
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Abstract Next Subvolume Method: a logical process-based approach for spatial stochastic simulation of chemical reactions.
    Wang B; Hou B; Xing F; Yao Y
    Comput Biol Chem; 2011 Jun; 35(3):193-8. PubMed ID: 21704266
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Modelling gene expression control using P systems: The Lac Operon, a case study.
    Romero-Campero FJ; Pérez-Jiménez MJ
    Biosystems; 2008 Mar; 91(3):438-57. PubMed ID: 17822838
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.