BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 15143819)

  • 1. Effective Mie scattering of a spherical fractal aggregate and its application in turbid media.
    Deng X; Gan X; Gu M
    Appl Opt; 2004 May; 43(14):2925-9. PubMed ID: 15143819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monte Carlo modeling of optical coherence tomography imaging through turbid media.
    Lu Q; Gan X; Gu M; Luo Q
    Appl Opt; 2004 Mar; 43(8):1628-37. PubMed ID: 15046164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural Interpretations of Static Light Scattering Patterns of Fractal Aggregates.
    Lambert S; Thill A; Ginestet P; Audic JM; Bottero JY
    J Colloid Interface Sci; 2000 Aug; 228(2):379-385. PubMed ID: 10926478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-Scattering software: part I: online accelerated Monte Carlo simulation of light transport through scattering media.
    Jönsson J; Berrocal E
    Opt Express; 2020 Dec; 28(25):37612-37638. PubMed ID: 33379594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New model for light propagation in highly inhomogeneous polydisperse turbid media with applications in spray diagnostics.
    Berrocal E; Meglinski I; Jermy M
    Opt Express; 2005 Nov; 13(23):9181-95. PubMed ID: 19503117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Study of UV Scattering Polarization Properties of Spherical Particles of Haze.
    Zhao TF; Wang C; Ke XZ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2017 Mar; 37(3):665-71. PubMed ID: 30148336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural Interpretations of Static Light Scattering Patterns of Fractal Aggregates.
    Thill A; Lambert S; Moustier S; Ginestet P; Audic JM; Bottero JY
    J Colloid Interface Sci; 2000 Aug; 228(2):386-392. PubMed ID: 10926479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laser light scattering in turbid media Part I: Experimental and simulated results for the spatial intensity distribution.
    Berrocal E; Sedarsky DL; Paciaroni ME; Meglinski IV; Linne MA
    Opt Express; 2007 Aug; 15(17):10649-65. PubMed ID: 19547419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial and angular distribution of light incident on coatings using Mie-scattering Monte Carlo simulations.
    Yamada M; Butts MD; Kalla KK
    J Cosmet Sci; 2005; 56(3):193-204. PubMed ID: 16116524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of the structure of very large bacterial aggregates by small-angle multiple light scattering and confocal image analysis.
    Lambert S; Moustier S; Dussouillez P; Barakat M; Bottero JY; Le Petit J; Ginestet P
    J Colloid Interface Sci; 2003 Jun; 262(2):384-90. PubMed ID: 16256618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Symmetry relationships for multiple scattering of polarized light in turbid spherical samples: theory and a Monte Carlo simulation.
    Otsuki S
    J Opt Soc Am A Opt Image Sci Vis; 2016 Feb; 33(2):258-69. PubMed ID: 26831777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation of diffuse photon migration in tissue by a Monte Carlo method derived from the optical scattering of spheroids.
    Hart VP; Doyle TE
    Appl Opt; 2013 Sep; 52(25):6220-9. PubMed ID: 24085080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical free-path-length distribution in a fractal aggregate and its effect on enhanced backscattering.
    Ishii K; Iwai T; Uozumi J; Asakura T
    Appl Opt; 1998 Jul; 37(21):5014-8. PubMed ID: 18285971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation of light scattering from a colloidal droplet using a polarized Monte Carlo method: application to the time-shift technique.
    Li L; Stegmann PG; Rosenkranz S; Schäfer W; Tropea C
    Opt Express; 2019 Dec; 27(25):36388-36404. PubMed ID: 31873419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A simple model for the structure of fractal aggregates.
    Lattuada M; Wu H; Morbidelli M
    J Colloid Interface Sci; 2003 Dec; 268(1):106-20. PubMed ID: 14611779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mean-field approximation of Mie scattering by fractal aggregates of identical spheres.
    Botet R; Rannou P; Cabane M
    Appl Opt; 1997 Nov; 36(33):8791-7. PubMed ID: 18264429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Concentration-dependent correlated scattering properties of Intralipid 20% dilutions.
    Raju M; Unni SN
    Appl Opt; 2017 Feb; 56(4):1157-1166. PubMed ID: 28158129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light scattering and absorption by fractal-like carbonaceous chain aggregates: comparison of theories and experiment.
    Chakrabarty RK; Moosmüller H; Arnott WP; Garro MA; Slowik JG; Cross ES; Han JH; Davidovits P; Onasch TB; Worsnop DR
    Appl Opt; 2007 Oct; 46(28):6990-7006. PubMed ID: 17906729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electromagnetic scattering by an aggregate of spheres.
    Xu YL
    Appl Opt; 1995 Jul; 34(21):4573-88. PubMed ID: 21052290
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stochastic modeling of polarized light scattering using a Monte Carlo based stencil method.
    Sormaz M; Stamm T; Jenny P
    J Opt Soc Am A Opt Image Sci Vis; 2010 May; 27(5):1100-10. PubMed ID: 20448777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.