These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 15144201)

  • 1. Simulation studies on the effects of mobile-phase modification on partitioning in liquid chromatography.
    Wick CD; Siepmann JI; Schure MR
    Anal Chem; 2004 May; 76(10):2886-92. PubMed ID: 15144201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chain conformation and solvent partitioning in reversed-phase liquid chromatography: Monte Carlo simulations for various water/methanol concentrations.
    Zhang L; Rafferty JL; Siepmann JI; Chen B; Schure MR
    J Chromatogr A; 2006 Sep; 1126(1-2):219-31. PubMed ID: 16820151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of analyte overloading on retention in gas-liquid chromatography: a molecular simulation view.
    Wick CD; Siepmann JI; Schures MR
    Anal Chem; 2002 Jan; 74(1):37-44. PubMed ID: 11795813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Retention mechanism in reversed-phase liquid chromatography: a molecular perspective.
    Rafferty JL; Zhang L; Siepmann JI; Schure MR
    Anal Chem; 2007 Sep; 79(17):6551-8. PubMed ID: 17668929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retention in gas-liquid chromatography with a polyethylene oxide stationary phase: molecular simulation and experiment.
    Sun L; Siepmann JI; Klotz WL; Schure MR
    J Chromatogr A; 2006 Sep; 1126(1-2):373-80. PubMed ID: 16814798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of chain length, embedded polar groups, pressure, and pore shape on structure and retention in reversed-phase liquid chromatography: molecular-level insights from Monte Carlo simulations.
    Rafferty JL; Siepmann JI; Schure MR
    J Chromatogr A; 2009 Mar; 1216(12):2320-31. PubMed ID: 19203762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature dependence of hydrogen bonding: an investigation of the retention of primary and secondary alcohols in gas-liquid chromatography.
    Sun L; Wick CD; Siepmann JI; Schure MR
    J Phys Chem B; 2005 Aug; 109(31):15118-25. PubMed ID: 16852913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular-level comparison of alkylsilane and polar-embedded reversed-phase liquid chromatography systems.
    Rafferty JL; Siepmann JI; Schure MR
    Anal Chem; 2008 Aug; 80(16):6214-21. PubMed ID: 18642848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mobile phase effects in reversed-phase liquid chromatography: a comparison of acetonitrile/water and methanol/water solvents as studied by molecular simulation.
    Rafferty JL; Siepmann JI; Schure MR
    J Chromatogr A; 2011 Apr; 1218(16):2203-13. PubMed ID: 21388628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Secondary isotope effects in liquid chromatography behaviour of 2H and 3H labelled solutes and solvents.
    Valleix A; Carrat S; Caussignac C; Léonce E; Tchapla A
    J Chromatogr A; 2006 May; 1116(1-2):109-26. PubMed ID: 16631181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights into the retention mechanism on an octadecylsiloxane-bonded silica stationary phase (HyPURITY C18) in reversed-phase liquid chromatography.
    Poole CF; Kiridena W; DeKay C; Koziol WW; Rosencrans RD
    J Chromatogr A; 2006 May; 1115(1-2):133-41. PubMed ID: 16564531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of bonded-phase coverage in reversed-phase liquid chromatography via molecular simulation II. Effects on solute retention.
    Rafferty JL; Siepmann JI; Schure MR
    J Chromatogr A; 2008 Sep; 1204(1):20-7. PubMed ID: 18687439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A molecular simulation study of the effects of stationary phase and solute chain length in reversed-phase liquid chromatography.
    Rafferty JL; Siepmann JI; Schure MR
    J Chromatogr A; 2012 Feb; 1223():24-34. PubMed ID: 22239960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative study of solvation parameter models accounting the effects of mobile phase composition in reversed-phase liquid chromatography.
    Torres-Lapasió JR; Ruiz-Angel MJ; García-Alvarez-Coque MC
    J Chromatogr A; 2007 Sep; 1166(1-2):85-96. PubMed ID: 17720177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of stationary phases in subcritical fluid chromatography by the solvation parameter model. I. Alkylsiloxane-bonded stationary phases.
    West C; Lesellier E
    J Chromatogr A; 2006 Mar; 1110(1-2):181-90. PubMed ID: 16487535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A study of the enthalpy and entropy contributions of the stationary phase in reversed-phase liquid chromatography.
    Ranatunga RP; Carr PW
    Anal Chem; 2000 Nov; 72(22):5679-92. PubMed ID: 11101249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of stationary phase solvation on shape selectivity and retention in reversed-phase liquid chromatography.
    Limsavarn L; Dorsey JG
    J Chromatogr A; 2006 Jan; 1102(1-2):143-53. PubMed ID: 16289120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of retention in reversed-phase liquid chromatography by means of the polarity parameter model.
    Lázaro E; Izquierdo P; Ràfols C; Rosés M; Bosch E
    J Chromatogr A; 2009 Jul; 1216(27):5214-27. PubMed ID: 19493533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficiency enhancements in micellar liquid chromatography through selection of stationary phase and alcohol modifier.
    Thomas DP; Foley JP
    J Chromatogr A; 2007 May; 1149(2):282-93. PubMed ID: 17418227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pressure dependence of the vapor-liquid-liquid phase behavior in ternary mixtures consisting of n-alkanes, n-perfluoroalkanes, and carbon dioxide.
    Zhang L; Siepmann JI
    J Phys Chem B; 2005 Feb; 109(7):2911-9. PubMed ID: 16851304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.