BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 15144564)

  • 1. Direct interaction between Smad3, APC10, CDH1 and HEF1 in proteasomal degradation of HEF1.
    Nourry C; Maksumova L; Pang M; Liu X; Wang T
    BMC Cell Biol; 2004 May; 5():20. PubMed ID: 15144564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel ability of Smad3 to regulate proteasomal degradation of a Cas family member HEF1.
    Liu X; Elia AE; Law SF; Golemis EA; Farley J; Wang T
    EMBO J; 2000 Dec; 19(24):6759-69. PubMed ID: 11118211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Smad3 recruits the anaphase-promoting complex for ubiquitination and degradation of SnoN.
    Stroschein SL; Bonni S; Wrana JL; Luo K
    Genes Dev; 2001 Nov; 15(21):2822-36. PubMed ID: 11691834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atrophin-1-interacting protein 4/human Itch is a ubiquitin E3 ligase for human enhancer of filamentation 1 in transforming growth factor-beta signaling pathways.
    Feng L; Guedes S; Wang T
    J Biol Chem; 2004 Jul; 279(28):29681-90. PubMed ID: 15051726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NEDD4-2 (neural precursor cell expressed, developmentally down-regulated 4-2) negatively regulates TGF-beta (transforming growth factor-beta) signalling by inducing ubiquitin-mediated degradation of Smad2 and TGF-beta type I receptor.
    Kuratomi G; Komuro A; Goto K; Shinozaki M; Miyazawa K; Miyazono K; Imamura T
    Biochem J; 2005 Mar; 386(Pt 3):461-70. PubMed ID: 15496141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ligand-dependent degradation of Smad3 by a ubiquitin ligase complex of ROC1 and associated proteins.
    Fukuchi M; Imamura T; Chiba T; Ebisawa T; Kawabata M; Tanaka K; Miyazono K
    Mol Biol Cell; 2001 May; 12(5):1431-43. PubMed ID: 11359933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two short segments of Smad3 are important for specific interaction of Smad3 with c-Ski and SnoN.
    Mizuide M; Hara T; Furuya T; Takeda M; Kusanagi K; Inada Y; Mori M; Imamura T; Miyazawa K; Miyazono K
    J Biol Chem; 2003 Jan; 278(1):531-6. PubMed ID: 12426322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The anaphase-promoting complex mediates TGF-beta signaling by targeting SnoN for destruction.
    Wan Y; Liu X; Kirschner MW
    Mol Cell; 2001 Nov; 8(5):1027-39. PubMed ID: 11741538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transforming growth factor beta facilitates beta-TrCP-mediated degradation of Cdc25A in a Smad3-dependent manner.
    Ray D; Terao Y; Nimbalkar D; Chu LH; Donzelli M; Tsutsui T; Zou X; Ghosh AK; Varga J; Draetta GF; Kiyokawa H
    Mol Cell Biol; 2005 Apr; 25(8):3338-47. PubMed ID: 15798217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction between Smad anchor for receptor activation and Smad3 is not essential for TGF-beta/Smad3-mediated signaling.
    Goto D; Nakajima H; Mori Y; Kurasawa K; Kitamura N; Iwamoto I
    Biochem Biophys Res Commun; 2001 Mar; 281(5):1100-5. PubMed ID: 11243848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CHIP controls the sensitivity of transforming growth factor-beta signaling by modulating the basal level of Smad3 through ubiquitin-mediated degradation.
    Xin H; Xu X; Li L; Ning H; Rong Y; Shang Y; Wang Y; Fu XY; Chang Z
    J Biol Chem; 2005 May; 280(21):20842-50. PubMed ID: 15781469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structures of APC/C(Cdh1) with substrates identify Cdh1 and Apc10 as the D-box co-receptor.
    da Fonseca PC; Kong EH; Zhang Z; Schreiber A; Williams MA; Morris EP; Barford D
    Nature; 2011 Feb; 470(7333):274-8. PubMed ID: 21107322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The 26S proteasome system in the signaling pathways of TGF-beta superfamily.
    Wang T
    Front Biosci; 2003 Sep; 8():d1109-27. PubMed ID: 12957830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of E2F1 by APC/C Cdh1 via K11 linkage-specific ubiquitin chain formation.
    Budhavarapu VN; White ED; Mahanic CS; Chen L; Lin FT; Lin WC
    Cell Cycle; 2012 May; 11(10):2030-8. PubMed ID: 22580462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of the constitutive and inducible degradation of Smad3 by the ubiquitin-proteasome pathway to transforming growth factor-beta signaling.
    Inoue Y; Kitagawa M; Onozaki K; Hayashi H
    J Interferon Cytokine Res; 2004 Jan; 24(1):43-54. PubMed ID: 14980084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Implications for the ubiquitination reaction of the anaphase-promoting complex from the crystal structure of the Doc1/Apc10 subunit.
    Au SW; Leng X; Harper JW; Barford D
    J Mol Biol; 2002 Mar; 316(4):955-68. PubMed ID: 11884135
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An architectural map of the anaphase-promoting complex.
    Thornton BR; Ng TM; Matyskiela ME; Carroll CW; Morgan DO; Toczyski DP
    Genes Dev; 2006 Feb; 20(4):449-60. PubMed ID: 16481473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TGF-beta induces assembly of a Smad2-Smurf2 ubiquitin ligase complex that targets SnoN for degradation.
    Bonni S; Wang HR; Causing CG; Kavsak P; Stroschein SL; Luo K; Wrana JL
    Nat Cell Biol; 2001 Jun; 3(6):587-95. PubMed ID: 11389444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Axin facilitates Smad3 activation in the transforming growth factor beta signaling pathway.
    Furuhashi M; Yagi K; Yamamoto H; Furukawa Y; Shimada S; Nakamura Y; Kikuchi A; Miyazono K; Kato M
    Mol Cell Biol; 2001 Aug; 21(15):5132-41. PubMed ID: 11438668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell-intrinsic regulation of axonal morphogenesis by the Cdh1-APC target SnoN.
    Stegmüller J; Konishi Y; Huynh MA; Yuan Z; Dibacco S; Bonni A
    Neuron; 2006 May; 50(3):389-400. PubMed ID: 16675394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.