These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
322 related articles for article (PubMed ID: 15144863)
1. Progression of temporal lobe epilepsy in the rat is associated with immunocytochemical changes in inhibitory interneurons in specific regions of the hippocampal formation. van Vliet EA; Aronica E; Tolner EA; Lopes da Silva FH; Gorter JA Exp Neurol; 2004 Jun; 187(2):367-79. PubMed ID: 15144863 [TBL] [Abstract][Full Text] [Related]
2. Pilocarpine-induced status epilepticus causes acute interneuron loss and hyper-excitatory propagation in rat insular cortex. Chen S; Fujita S; Koshikawa N; Kobayashi M Neuroscience; 2010 Mar; 166(1):341-53. PubMed ID: 20018232 [TBL] [Abstract][Full Text] [Related]
3. Alterations of hippocampal GAbaergic system contribute to development of spontaneous recurrent seizures in the rat lithium-pilocarpine model of temporal lobe epilepsy. André V; Marescaux C; Nehlig A; Fritschy JM Hippocampus; 2001; 11(4):452-68. PubMed ID: 11530850 [TBL] [Abstract][Full Text] [Related]
4. Permanently altered hippocampal structure, excitability, and inhibition after experimental status epilepticus in the rat: the "dormant basket cell" hypothesis and its possible relevance to temporal lobe epilepsy. Sloviter RS Hippocampus; 1991 Jan; 1(1):41-66. PubMed ID: 1688284 [TBL] [Abstract][Full Text] [Related]
5. Calcium-binding protein (calbindin-D28k) and parvalbumin immunocytochemistry: localization in the rat hippocampus with specific reference to the selective vulnerability of hippocampal neurons to seizure activity. Sloviter RS J Comp Neurol; 1989 Feb; 280(2):183-96. PubMed ID: 2925892 [TBL] [Abstract][Full Text] [Related]
6. Histopathology and reorganization of chandelier cells in the human epileptic sclerotic hippocampus. Arellano JI; Muñoz A; Ballesteros-Yáñez I; Sola RG; DeFelipe J Brain; 2004 Jan; 127(Pt 1):45-64. PubMed ID: 14534159 [TBL] [Abstract][Full Text] [Related]
7. Focal inhibitory interneuron loss and principal cell hyperexcitability in the rat hippocampus after microinjection of a neurotoxic conjugate of saporin and a peptidase-resistant analog of Substance P. Martin JL; Sloviter RS J Comp Neurol; 2001 Jul; 436(2):127-52. PubMed ID: 11438920 [TBL] [Abstract][Full Text] [Related]
8. Substance P receptor expression by inhibitory interneurons of the rat hippocampus: enhanced detection using improved immunocytochemical methods for the preservation and colocalization of GABA and other neuronal markers. Sloviter RS; Ali-Akbarian L; Horvath KD; Menkens KA J Comp Neurol; 2001 Feb; 430(3):283-305. PubMed ID: 11169468 [TBL] [Abstract][Full Text] [Related]
9. Calcium-binding protein (calbindin-D28K) and parvalbumin immunocytochemistry in the normal and epileptic human hippocampus. Sloviter RS; Sollas AL; Barbaro NM; Laxer KD J Comp Neurol; 1991 Jun; 308(3):381-96. PubMed ID: 1865007 [TBL] [Abstract][Full Text] [Related]
10. Early loss of interneurons and delayed subunit-specific changes in GABA(A)-receptor expression in a mouse model of mesial temporal lobe epilepsy. Bouilleret V; Loup F; Kiener T; Marescaux C; Fritschy JM Hippocampus; 2000; 10(3):305-24. PubMed ID: 10902900 [TBL] [Abstract][Full Text] [Related]
11. Precocious development of parvalbumin-like immunoreactive interneurons in the hippocampal formation and entorhinal cortex of the fetal cynomolgus monkey. Berger B; De Grissac N; Alvarez C J Comp Neurol; 1999 Jan; 403(3):309-31. PubMed ID: 9886033 [TBL] [Abstract][Full Text] [Related]
12. Progression of neuronal damage after status epilepticus and during spontaneous seizures in a rat model of temporal lobe epilepsy. Pitkänen A; Nissinen J; Nairismägi J; Lukasiuk K; Gröhn OH; Miettinen R; Kauppinen R Prog Brain Res; 2002; 135():67-83. PubMed ID: 12143371 [TBL] [Abstract][Full Text] [Related]
14. Cytoarchitectonics and afferent/efferent reorganization of neurons in layers II and III of the lateral entorhinal cortex in the mouse pilocarpine model of temporal lobe epilepsy. Ma DL; Tang YC; Tang FR J Neurosci Res; 2008 May; 86(6):1324-42. PubMed ID: 18058944 [TBL] [Abstract][Full Text] [Related]
15. A novel population of calretinin-positive neurons comprises reelin-positive Cajal-Retzius cells in the hippocampal formation of the adult domestic pig. Abrahám H; Tóth Z; Seress L Hippocampus; 2004; 14(3):385-401. PubMed ID: 15132437 [TBL] [Abstract][Full Text] [Related]
16. Relationship between neuronal loss and interictal glucose metabolism during the chronic phase of the lithium-pilocarpine model of epilepsy in the immature and adult rat. Dubé C; Boyet S; Marescaux C; Nehlig A Exp Neurol; 2001 Feb; 167(2):227-41. PubMed ID: 11161611 [TBL] [Abstract][Full Text] [Related]
17. Parvalbumin- and calbindin D28k-immunoreactive neurons in the hippocampal formation of the macaque monkey. Seress L; Gulyás AI; Freund TF J Comp Neurol; 1991 Nov; 313(1):162-77. PubMed ID: 1761752 [TBL] [Abstract][Full Text] [Related]
18. Densities of parvalbumin-immunoreactive neurons in non-malformed hippocampal sclerosis-temporal neocortex and in cortical dysplasias. Zamecnik J; Krsek P; Druga R; Marusic P; Benes V; Tichy M; Komarek V Brain Res Bull; 2006 Feb; 68(6):474-81. PubMed ID: 16459206 [TBL] [Abstract][Full Text] [Related]
19. Drug resistance and hippocampal damage after delayed treatment of pilocarpine-induced epilepsy in the rat. Chakir A; Fabene PF; Ouazzani R; Bentivoglio M Brain Res Bull; 2006 Dec; 71(1-3):127-38. PubMed ID: 17113938 [TBL] [Abstract][Full Text] [Related]
20. Enhanced synaptic excitation-inhibition ratio in hippocampal interneurons of rats with temporal lobe epilepsy. Stief F; Zuschratter W; Hartmann K; Schmitz D; Draguhn A Eur J Neurosci; 2007 Jan; 25(2):519-28. PubMed ID: 17284194 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]