BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 15144906)

  • 41. The strength of binding of the weakly-binding crossbridge created by sulfhydryl modification has very low calcium sensitivity.
    Barnett VA; Schoenberg M
    Adv Exp Med Biol; 1993; 332():133-8; discussion 138-40. PubMed ID: 8109326
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Decavanadate as a biochemical tool in the elucidation of muscle contraction regulation.
    Tiago T; Aureliano M; Moura JJ
    J Inorg Biochem; 2004 Nov; 98(11):1902-10. PubMed ID: 15522416
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Does the speed of shortening affect steady-state force depression in cat soleus muscle?
    Leonard TR; Herzog W
    J Biomech; 2005 Nov; 38(11):2190-7. PubMed ID: 16154405
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [C-terminal sites of caldesmon drive ATP hydrolysis cycle by shifting actomyosin itermediates from strong to weak binding of myosin and actin].
    Pronina OE; Copeland O; Marston S; Borovikov IuS
    Tsitologiia; 2006; 48(1):9-18. PubMed ID: 16568830
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Force generated by myosin cross-bridges is reduced in myofibrils exposed to ROS/RNS.
    Persson M; Steinz MM; Westerblad H; Lanner JT; Rassier DE
    Am J Physiol Cell Physiol; 2019 Dec; 317(6):C1304-C1312. PubMed ID: 31553646
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of a preferential myosin loss on Ca2+ activation of force generation in single human skeletal muscle fibres.
    Ochala J; Larsson L
    Exp Physiol; 2008 Apr; 93(4):486-95. PubMed ID: 18245202
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Suppressing effect of 2,3-butanedione monoxime on contraction and ATPase activity of rabbit skeletal muscle.
    Higuchi H; Takemori S; Umazume Y
    Prog Clin Biol Res; 1989; 315():225-6. PubMed ID: 2529562
    [No Abstract]   [Full Text] [Related]  

  • 48. Influence of a strong-binding myosin analogue on calcium-sensitive mechanical properties of skinned skeletal muscle fibers.
    Swartz DR; Moss RL
    J Biol Chem; 1992 Oct; 267(28):20497-506. PubMed ID: 1400367
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A possible potentiating effect of inorganic phosphate on tension production in skinned skeletal muscle fibers.
    Endo M; Tsukioka M; Iino M
    Prog Clin Biol Res; 1989; 315():63-8. PubMed ID: 2798520
    [No Abstract]   [Full Text] [Related]  

  • 50. Thymol contracture and rapid cooling contraction of thymol-treated muscle fibres.
    Sakai T; Fujii K; Takemoto N
    Nihon Seirigaku Zasshi; 1967; 29(10):600-1. PubMed ID: 5627079
    [No Abstract]   [Full Text] [Related]  

  • 51. Reduced effect of pH on skinned rabbit psoas muscle mechanics at high temperatures: implications for fatigue.
    Pate E; Bhimani M; Franks-Skiba K; Cooke R
    J Physiol; 1995 Aug; 486 ( Pt 3)(Pt 3):689-94. PubMed ID: 7473229
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Suppression of contractile force in muscle fibers by antibody to myosin subfragment 2.
    Lovell S; Karr T; Harrington WF
    Proc Natl Acad Sci U S A; 1988 Mar; 85(6):1849-53. PubMed ID: 2964637
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Elasticity of mutant myosin subfragment-1 arranged on a functional silver surface.
    Suda H; Sasaki YC; Oishi N; Hiraoka N; Sutoh K
    Biochem Biophys Res Commun; 1999 Aug; 261(2):276-82. PubMed ID: 10425178
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Reversible inactivation of myosin subfragment-1 activity by mechanical immobilization: a reappraisal.
    Grazi E; Cintio O; Magri E; Trombetta G
    Biophys J; 1999 Jun; 76(6):3349-50; author reply 3351. PubMed ID: 10408879
    [No Abstract]   [Full Text] [Related]  

  • 55. The myosin motor: muscle contraction and in vitro movement.
    Morel JM; D'Hahan N
    Biochim Biophys Acta; 2000 Apr; 1474(2):128-32. PubMed ID: 10742591
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Synthesis of C-ring-modified blebbistatin derivatives and evaluation of their myosin II ATPase inhibitory potency.
    Roman BI; Verhasselt S; Mangodt CW; De Wever O; Stevens CV
    Bioorg Med Chem Lett; 2018 Jul; 28(13):2261-2264. PubMed ID: 29807794
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Effect of pH on ATPase myosin activity of different muscle types].
    Bohutska KI; Tsymbaliuk OV; Danylova VM; Miroshnychenko MS
    Fiziol Zh (1994); 2003; 49(6):52-5. PubMed ID: 14965039
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Synthesis of biotinylated xestoquinone that retains inhibitory activity against Ca2+ ATPase of skeletal muscle myosin.
    Nakamura M; Kakuda T; Oba Y; Ojika M; Nakamura H
    Bioorg Med Chem; 2003 Jul; 11(14):3077-82. PubMed ID: 12818670
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Drosophila UNC-45 prevents heat-induced aggregation of skeletal muscle myosin and facilitates refolding of citrate synthase.
    Melkani GC; Lee CF; Cammarato A; Bernstein SI
    Biochem Biophys Res Commun; 2010 May; 396(2):317-22. PubMed ID: 20403336
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Effect of thymol on the "intrinsic granules" in rabbit skeletal myofibrils].
    Nakai T; Yamamoto T
    Sapporo Igaku Zasshi; 1966 Jul; 30(1):49-53. PubMed ID: 4227708
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.