These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 15145032)

  • 1. Skeletal biology: Where matrix meets mineral.
    Young MF
    Matrix Biol; 2016; 52-54():1-6. PubMed ID: 27131884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent progress in the manipulation of biochemical and biophysical cues for engineering functional tissues.
    Bakhshandeh B; Ranjbar N; Abbasi A; Amiri E; Abedi A; Mehrabi MR; Dehghani Z; Pennisi CP
    Bioeng Transl Med; 2023 Mar; 8(2):e10383. PubMed ID: 36925674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Turning Nature's own processes into design strategies for living bone implant biomanufacturing: a decade of Developmental Engineering.
    Papantoniou I; Nilsson Hall G; Loverdou N; Lesage R; Herpelinck T; Mendes L; Geris L
    Adv Drug Deliv Rev; 2021 Feb; 169():22-39. PubMed ID: 33290762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Induction of Bone Formation: The Translation Enigma.
    Klar RM
    Front Bioeng Biotechnol; 2018; 6():74. PubMed ID: 29938204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The State of Starch/Hydroxyapatite Composite Scaffold in Bone Tissue Engineering with Consideration for Dielectric Measurement as an Alternative Characterization Technique.
    Mohd Roslan MR; Mohd Kamal NL; Abdul Khalid MF; Mohd Nasir NF; Cheng EM; Beh CY; Tan JS; Mohamed MS
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33919814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of Two Bovine Bone Blocks (Sintered and Non-Sintered) Used for Bone Grafts: Physico-Chemical Characterization and In Vitro Bioactivity and Cellular Analysis.
    Gehrke SA; Mazón P; Pérez-Díaz L; Calvo-Guirado JL; Velásquez P; Aragoneses JM; Fernández-Domínguez M; De Aza PN
    Materials (Basel); 2019 Feb; 12(3):. PubMed ID: 30717171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of bone marrow mononuclear cells on biomaterials for bone tissue engineering in vitro.
    Henrich D; Verboket R; Schaible A; Kontradowitz K; Oppermann E; Brune JC; Nau C; Meier S; Bonig H; Marzi I; Seebach C
    Biomed Res Int; 2015; 2015():762407. PubMed ID: 25802865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using poly(lactic-co-glycolic acid) microspheres to encapsulate plasmid of bone morphogenetic protein 2/polyethylenimine nanoparticles to promote bone formation in vitro and in vivo.
    Qiao C; Zhang K; Jin H; Miao L; Shi C; Liu X; Yuan A; Liu J; Li D; Zheng C; Zhang G; Li X; Yang B; Sun H
    Int J Nanomedicine; 2013; 8():2985-95. PubMed ID: 23990717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Embryonic stem cells in scaffold-free three-dimensional cell culture: osteogenic differentiation and bone generation.
    Handschel J; Naujoks C; Depprich R; Lammers L; Kübler N; Meyer U; Wiesmann HP
    Head Face Med; 2011 Jul; 7():12. PubMed ID: 21752302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prospects of micromass culture technology in tissue engineering.
    Handschel JG; Depprich RA; Kübler NR; Wiesmann HP; Ommerborn M; Meyer U
    Head Face Med; 2007 Jan; 3():4. PubMed ID: 17212823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Macroporous scaffolds associated with cells to construct a hybrid biomaterial for bone tissue engineering.
    Rosa AL; de Oliveira PT; Beloti MM
    Expert Rev Med Devices; 2008 Nov; 5(6):719-28. PubMed ID: 19025348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication and detection of tissue-engineered bones with bio-derived scaffolds in a rotating bioreactor.
    Song K; Yang Z; Liu T; Zhi W; Li X; Deng L; Cui Z; Ma X
    Biotechnol Appl Biochem; 2006 Sep; 45(Pt 2):65-74. PubMed ID: 16681463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scaffold-based bone engineering by using genetically modified cells.
    Hutmacher DW; Garcia AJ
    Gene; 2005 Feb; 347(1):1-10. PubMed ID: 15777645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biological and biophysical principles in extracorporal bone tissue engineering. Part I.
    Meyer U; Joos U; Wiesmann HP
    Int J Oral Maxillofac Surg; 2004 Jun; 33(4):325-32. PubMed ID: 15145032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biological and biophysical principles in extracorporal bone tissue engineering. Part II.
    Wiesmann HP; Joos U; Meyer U
    Int J Oral Maxillofac Surg; 2004 Sep; 33(6):523-30. PubMed ID: 15308249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological and biophysical principles in extracorporal bone tissue engineering. Part III.
    Meyer U; Joos U; Wiesmann HP
    Int J Oral Maxillofac Surg; 2004 Oct; 33(7):635-41. PubMed ID: 15337175
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.