These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 15145561)

  • 1. Infiltration and redistribution of LNAPL into unsaturated layered porous media.
    Wipfler EL; Ness M; Breedveld GD; Marsman A; Van Der Zee SE
    J Contam Hydrol; 2004 Jul; 71(1-4):47-66. PubMed ID: 15145561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental and theoretical investigation of LNAPL movement in stratified media during soil remediation.
    Lashanizadegan A; Ayatollahi Sh; Kazemi H
    Environ Technol; 2007 Jul; 28(7):743-50. PubMed ID: 17674647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-dimensional laboratory simulation of LNAPL infiltration and redistribution in the vadose zone.
    Kechavarzi C; Soga K; Illangasekare TH
    J Contam Hydrol; 2005 Feb; 76(3-4):211-33. PubMed ID: 15683881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of soil moisture dynamics on dense nonaqueous phase liquid (DNAPL) spill zone architecture in heterogeneous porous media.
    Yoon H; Valocchi AJ; Werth CJ
    J Contam Hydrol; 2007 Mar; 90(3-4):159-83. PubMed ID: 17184872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of nonaqueous phase liquid (NAPL) source zone architecture on mass removal mechanisms in strongly layered heterogeneous porous media during soil vapor extraction.
    Yoon H; Werth CJ; Valocchi AJ; Oostrom M
    J Contam Hydrol; 2008 Aug; 100(1-2):58-71. PubMed ID: 18619707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing the impact of water infiltration on LNAPL mobilization in sand column using simplified image analysis method.
    Alazaiza MYD; Ramli MH; Copty NK; Ling MC
    J Contam Hydrol; 2021 Mar; 238():103769. PubMed ID: 33465656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling dissolution and volatilization of LNAPL sources migrating on the groundwater table.
    Kim J; Corapcioglu MY
    J Contam Hydrol; 2003 Aug; 65(1-2):137-58. PubMed ID: 12855205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An analytical model for predicting LNAPL distribution and recovery from multi-layered soils.
    Jeong J; Charbeneau RJ
    J Contam Hydrol; 2014 Jan; 156():52-61. PubMed ID: 24262305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Remediation of NAPL below the water table by steam-induced heat conduction.
    Gudbjerg J; Sonnenborg TO; Jensen KH
    J Contam Hydrol; 2004 Aug; 72(1-4):207-25. PubMed ID: 15240173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiphase flow and transport through fractured heterogeneous porous media.
    Reynolds DA; Kueper BH
    J Contam Hydrol; 2004 Jul; 71(1-4):89-110. PubMed ID: 15145563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An environmental screening model to assess the consequences to soil and groundwater from railroad-tank-car spills of light non-aqueous phase liquids.
    Yoon H; Werth CJ; Barkan CP; Schaeffer DJ; Anand P
    J Hazard Mater; 2009 Jun; 165(1-3):332-44. PubMed ID: 19036513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multidimensional validation of a numerical model for simulating a DNAPL release in heterogeneous porous media.
    Grant GP; Gerhard JI; Kueper BH
    J Contam Hydrol; 2007 Jun; 92(1-2):109-28. PubMed ID: 17289212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical and experimental investigation of DNAPL removal mechanisms in a layered porous medium by means of soil vapor extraction.
    Yoon H; Oostrom M; Wietsma TW; Werth CJ; Valocchi AJ
    J Contam Hydrol; 2009 Oct; 109(1-4):1-13. PubMed ID: 19720427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of DNAPL contamination from the saturated zone by the combined effect of vertical upward flushing and density reduction.
    Hofstee C; Gutiérrez Ziegler C; Trötschler O; Braun J
    J Contam Hydrol; 2003 Dec; 67(1-4):61-78. PubMed ID: 14607470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative imaging of contaminant distributions in heterogeneous porous media laboratory experiments.
    McNeil JD; Oldenborger GA; Schincariol RA
    J Contam Hydrol; 2006 Mar; 84(1-2):36-54. PubMed ID: 16455153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the LNAPL Migration Process in the Vadose Zone under Two Different Media Conditions.
    Zuo R; Zhao X; Yang J; Pan M; Xue Z; Gao X; Wang J; Teng Y
    Int J Environ Res Public Health; 2021 Oct; 18(21):. PubMed ID: 34769594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Infiltration of PCE in a system containing spatial wettability variations.
    O'Carroll DM; Bradford SA; Abriola LM
    J Contam Hydrol; 2004 Sep; 73(1-4):39-63. PubMed ID: 15336789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A constitutive model for air-NAPL-water flow in the vadose zone accounting for immobile, non-occluded (residual) NAPL in strongly water-wet porous media.
    Lenhard RJ; Oostrom M; Dane JH
    J Contam Hydrol; 2004 Jul; 71(1-4):261-82. PubMed ID: 15145570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Steam and air co-injection in removing residual TCE in unsaturated layered sandy porous media.
    Peng S; Wang N; Chen J
    J Contam Hydrol; 2013 Oct; 153():24-36. PubMed ID: 23962760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental study on the transport characteristics of buried pipeline leakage and the performance of groundwater remediation system.
    Jiang W; Yang J; Zhu J; Liu Y; Chen Y; Sun Q; Wang Y; Zhang H
    Environ Sci Pollut Res Int; 2018 Dec; 25(36):36570-36580. PubMed ID: 30374722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.