These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 1514592)

  • 1. Transmucosal impedance of small intestine: correlation with transport of sugars and amino acids.
    Pappenheimer JR; Volpp K
    Am J Physiol; 1992 Aug; 263(2 Pt 1):C480-93. PubMed ID: 1514592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural basis for physiological regulation of paracellular pathways in intestinal epithelia.
    Madara JL; Pappenheimer JR
    J Membr Biol; 1987; 100(2):149-64. PubMed ID: 3430571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological regulation of transepithelial impedance in the intestinal mucosa of rats and hamsters.
    Pappenheimer JR
    J Membr Biol; 1987; 100(2):137-48. PubMed ID: 3430570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies on the electrical potential profile across rabbit ileum. Effects of sugars and amino acids on transmural and transmucosal electrical potential differences.
    Rose RC; Schultz SG
    J Gen Physiol; 1971 Jun; 57(6):639-63. PubMed ID: 5576764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiological regulation of epithelial junctions in intestinal epithelia.
    Pappenheimer JR
    Acta Physiol Scand Suppl; 1988; 571():43-51. PubMed ID: 3239410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of human jejunal transmucosal resistance and MLC phosphorylation by Na(+)-glucose cotransport.
    Berglund JJ; Riegler M; Zolotarevsky Y; Wenzl E; Turner JR
    Am J Physiol Gastrointest Liver Physiol; 2001 Dec; 281(6):G1487-93. PubMed ID: 11705754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of solvent drag through intercellular junctions to absorption of nutrients by the small intestine of the rat.
    Pappenheimer JR; Reiss KZ
    J Membr Biol; 1987; 100(2):123-36. PubMed ID: 3430569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transmucosal Na+ electrochemical potential difference and solute accumulation in epithelial cells of the small intestine.
    Armstrong WM; Garcia-Diaz JF; O'Doherty J; O'Regan MG
    Fed Proc; 1979 Dec; 38(13):2722-8. PubMed ID: 510560
    [No Abstract]   [Full Text] [Related]  

  • 9. Na+-independent transport of bipolar and cationic amino acids across the luminal membrane of the small intestine.
    Munck BG; Munck LK
    Am J Physiol; 1997 Apr; 272(4 Pt 2):R1060-8. PubMed ID: 9140002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the coupling of membrane digestion with intestinal absorption of sugars and amino acids.
    Pappenheimer JR
    Am J Physiol; 1993 Sep; 265(3 Pt 1):G409-17. PubMed ID: 8214061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sugar and amino acid intestinal transport systems in land snail Helix aspersa.
    Barber A; Deán JI; Jordana R; Ponz F
    Rev Esp Fisiol; 1989; 45 Suppl():215-23. PubMed ID: 2641823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlation of structural changes at different levels of the jejunal villus with positive net water transport in vivo and in vitro.
    Melligott TF; Beck IT; Dinda PK; Thompson S
    Can J Physiol Pharmacol; 1975 Jun; 53(3):439-50. PubMed ID: 1148930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Is intestinal peptide transport energized by a proton gradient?
    Ganapathy ; Leibach FH
    Am J Physiol; 1985 Aug; 249(2 Pt 1):G153-60. PubMed ID: 2992286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport of sugars and amino acids in the intestine: evidence for a common carrier.
    Alvarado F
    Science; 1966 Feb; 151(3713):1010-3. PubMed ID: 5907288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrical properties and active solute transport in rat small intestine. II. Conductive properties of transepithelial routes.
    Okada Y; Irimajiri A; Inouye A
    J Membr Biol; 1977 Mar; 31(3):221-32. PubMed ID: 845930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Role of apical and basolateral cellular respiration in the transport of sugars, amino acids and dipeptides in the small intestine].
    Ekkert LG; Ugolev AM
    Zh Obshch Biol; 1985; 46(4):453-61. PubMed ID: 4050121
    [No Abstract]   [Full Text] [Related]  

  • 17. Developmental change of interrelationship between sugar-, amino acid- or peptide-evoked potential and influx across the mucosal border in the small intestine.
    Ohkohchi N; Himukai M; Igarashi Y; Ohi R; Mori S
    Gastroenterol Jpn; 1987 Dec; 22(6):716-21. PubMed ID: 3443253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of sugars and amino acids on amphibian intestinal Cl- transport and intracellular Na+, K+, and Cl- activity.
    White JF; Burnup K; Ellingsen D
    Am J Physiol; 1986 Jan; 250(1 Pt 1):G109-17. PubMed ID: 3942212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potassium transport by flounder intestinal mucosa.
    Frizzell RA; Halm DR; Musch MW; Stewart CP; Field M
    Am J Physiol; 1984 Jun; 246(6 Pt 2):F946-51. PubMed ID: 6742138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The columnar epithelial cell of the small intestine: digestion and transport. II.
    Gardner JD; Brown MS; Laster L
    N Engl J Med; 1970 Dec; 283(23):1264-71. PubMed ID: 4920343
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.