These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 1514592)

  • 21. Mechanism of Cl- translocation across small intestinal brush-border membrane. II. Demonstration of Cl--OH- exchange and Cl- conductance.
    Liedtke CM; Hopfer U
    Am J Physiol; 1982 Mar; 242(3):G272-80. PubMed ID: 7065189
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interrelationship between sugar-evoked increases in transmural potential difference and sugar influxes across the mucosal border in the small intestine.
    Hoshi T; Suzuki Y; Kusachi T; Igarashi Y
    Tohoku J Exp Med; 1976 Jul; 119(3):201-9. PubMed ID: 960090
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Energetics of sodium-coupled active transport mechanisms in invertebrate epithelia.
    Gerencser GA; Stevens BR
    Am J Physiol; 1989 Sep; 257(3 Pt 2):R461-72. PubMed ID: 2675637
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pathways of cycloleucine transport in killifish small intestine.
    Miller DS; Kinter WB
    Am J Physiol; 1979 Dec; 237(6):E567-72. PubMed ID: 517655
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Application of a potential difference to evaluate the absorptive faculty in the small intestine. The changes in potential differences, uptake of sugars and amino acid and electrical transmural resistance in injured intestine].
    Ohkohchi N; Kasai M; Ohi R; Igarashi Y; Naganuma H
    Nihon Geka Gakkai Zasshi; 1985 Dec; 86(12):1590-5. PubMed ID: 4088187
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intestinal transport of amino acids as affected by sugars.
    Reiser S; Christiansen PA
    Am J Physiol; 1969 Apr; 216(4):915-24. PubMed ID: 5775889
    [No Abstract]   [Full Text] [Related]  

  • 27. Characterization of conductive pathways in guinea pig distal colon in vitro.
    Clauss W; Dürr J; Rechkemmer G
    Am J Physiol; 1985 Feb; 248(2 Pt 1):G176-83. PubMed ID: 3970198
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of villus microcirculation in intestinal absorption of glucose: coupling of epithelial with endothelial transport.
    Pappenheimer JR; Michel CC
    J Physiol; 2003 Dec; 553(Pt 2):561-74. PubMed ID: 12937296
    [TBL] [Abstract][Full Text] [Related]  

  • 29. ZO-1 maintains its spatial distribution but dissociates from junctional fibrils during tight junction regulation.
    Madara JL; Carlson S; Anderson JM
    Am J Physiol; 1993 May; 264(5 Pt 1):C1096-101. PubMed ID: 8498473
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Membrane transport system of amino acids in the small intestine].
    Nakamura T
    Nihon Rinsho; 1992 Jul; 50(7):1461-6. PubMed ID: 1404872
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Carbohydrate absorption. Studies on the glucose transport by isolated brush border membranes. A contribution towards an understanding of the molecular mechanism of sugar absorption.
    Hopper U
    Bibl Nutr Dieta; 1975; (22):42-9. PubMed ID: 1095010
    [TBL] [Abstract][Full Text] [Related]  

  • 32. C. difficile toxin A increases intestinal permeability and induces Cl- secretion.
    Moore R; Pothoulakis C; LaMont JT; Carlson S; Madara JL
    Am J Physiol; 1990 Aug; 259(2 Pt 1):G165-72. PubMed ID: 2116728
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of phlorizin and sodium on glucose-elicited alterations of cell junctions in intestinal epithelia.
    Atisook K; Carlson S; Madara JL
    Am J Physiol; 1990 Jan; 258(1 Pt 1):C77-85. PubMed ID: 2105653
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Loss of claudin-15, but not claudin-2, causes Na+ deficiency and glucose malabsorption in mouse small intestine.
    Tamura A; Hayashi H; Imasato M; Yamazaki Y; Hagiwara A; Wada M; Noda T; Watanabe M; Suzuki Y; Tsukita S
    Gastroenterology; 2011 Mar; 140(3):913-23. PubMed ID: 20727355
    [TBL] [Abstract][Full Text] [Related]  

  • 35. PGE(2) activation of apical membrane Cl(-) channels in A6 epithelia: impedance analysis.
    Păunescu TG; Helman SI
    Biophys J; 2001 Aug; 81(2):852-66. PubMed ID: 11463630
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of calcium transport by basolateral membrane vesicles of human small intestine.
    Kikuchi K; Kikuchi T; Ghishan FK
    Am J Physiol; 1988 Oct; 255(4 Pt 1):G482-9. PubMed ID: 3140674
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The postnatal development of sodium transport in the proximal small intestine of the rabbit.
    Shepherd RW; Hamilton JR; Gall DG
    Pediatr Res; 1980 Mar; 14(3):250-3. PubMed ID: 7383747
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of cellular and paracellular conductance patterns on epithelial transport and metabolism.
    Essig A
    Biophys J; 1982 May; 38(2):143-52. PubMed ID: 6284264
    [TBL] [Abstract][Full Text] [Related]  

  • 39. What transport adaptations enable mammals to absorb sugars and amino acids faster than reptiles?
    Karasov WH; Solberg DH; Diamond JM
    Am J Physiol; 1985 Aug; 249(2 Pt 1):G271-83. PubMed ID: 3895977
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phospholipid metabolism during amino acid transport in hamster small intestine.
    McLeod ME; Bressler R
    Proc Soc Exp Biol Med; 1969 Jan; 130(1):268-73. PubMed ID: 5762507
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.