These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
255 related articles for article (PubMed ID: 15145944)
1. Preferential Cu2+ coordination by His96 and His111 induces beta-sheet formation in the unstructured amyloidogenic region of the prion protein. Jones CE; Abdelraheim SR; Brown DR; Viles JH J Biol Chem; 2004 Jul; 279(31):32018-27. PubMed ID: 15145944 [TBL] [Abstract][Full Text] [Related]
2. Probing copper2+ binding to the prion protein using diamagnetic nickel2+ and 1H NMR: the unstructured N terminus facilitates the coordination of six copper2+ ions at physiological concentrations. Jones CE; Klewpatinond M; Abdelraheim SR; Brown DR; Viles JH J Mol Biol; 2005 Mar; 346(5):1393-407. PubMed ID: 15713489 [TBL] [Abstract][Full Text] [Related]
3. β-cleavage of the human prion protein impacts Cu(II) coordination at its non-octarepeat region. Sánchez-López C; Quintanar L J Inorg Biochem; 2022 Mar; 228():111686. PubMed ID: 34929540 [TBL] [Abstract][Full Text] [Related]
4. Fragment length influences affinity for Cu2+ and Ni2+ binding to His96 or His111 of the prion protein and spectroscopic evidence for a multiple histidine binding only at low pH. Klewpatinond M; Viles JH Biochem J; 2007 Jun; 404(3):393-402. PubMed ID: 17331076 [TBL] [Abstract][Full Text] [Related]
5. Copper binding to the octarepeats of the prion protein. Affinity, specificity, folding, and cooperativity: insights from circular dichroism. Garnett AP; Viles JH J Biol Chem; 2003 Feb; 278(9):6795-802. PubMed ID: 12454014 [TBL] [Abstract][Full Text] [Related]
6. Deconvoluting the Cu2+ binding modes of full-length prion protein. Klewpatinond M; Davies P; Bowen S; Brown DR; Viles JH J Biol Chem; 2008 Jan; 283(4):1870-81. PubMed ID: 18042548 [TBL] [Abstract][Full Text] [Related]
8. Insertion of beta-alanine in model peptides for copper binding to His96 and His111 of the human prion protein. Rivillas-Acevedo L; Maciel-Barón L; García JE; Juaristi E; Quintanar L J Inorg Biochem; 2013 Sep; 126():104-10. PubMed ID: 23796442 [TBL] [Abstract][Full Text] [Related]
9. Real-time kinetics of discontinuous and highly conformational metal-ion binding sites of prion protein. Treiber C; Thompsett AR; Pipkorn R; Brown DR; Multhaup G J Biol Inorg Chem; 2007 Jun; 12(5):711-20. PubMed ID: 17345106 [TBL] [Abstract][Full Text] [Related]
10. Copper(II) interaction with prion peptide fragments encompassing histidine residues within and outside the octarepeat domain: speciation, stability constants and binding details. Osz K; Nagy Z; Pappalardo G; Di Natale G; Sanna D; Micera G; Rizzarelli E; Sóvágó I Chemistry; 2007; 13(25):7129-43. PubMed ID: 17566127 [TBL] [Abstract][Full Text] [Related]
11. CuII binding sites located at His-96 and His-111 of the human prion protein: thermodynamic and spectroscopic studies on model peptides. Gralka E; Valensin D; Porciatti E; Gajda C; Gaggelli E; Valensin G; Kamysz W; Nadolny R; Guerrini R; Bacco D; Remelli M; Kozlowski H Dalton Trans; 2008 Oct; (38):5207-19. PubMed ID: 18813375 [TBL] [Abstract][Full Text] [Related]
12. Both Met(109) and Met(112) are utilized for Cu(II) coordination by the amyloidogenic fragment of the human prion protein at physiological pH. Shearer J; Soh P; Lentz S J Inorg Biochem; 2008 Dec; 102(12):2103-13. PubMed ID: 18778855 [TBL] [Abstract][Full Text] [Related]
13. Copper binding to the prion protein: structural implications of four identical cooperative binding sites. Viles JH; Cohen FE; Prusiner SB; Goodin DB; Wright PE; Dyson HJ Proc Natl Acad Sci U S A; 1999 Mar; 96(5):2042-7. PubMed ID: 10051591 [TBL] [Abstract][Full Text] [Related]
14. Copper alters aggregation behavior of prion protein and induces novel interactions between its N- and C-terminal regions. Thakur AK; Srivastava AK; Srinivas V; Chary KVR; Rao CM J Biol Chem; 2011 Nov; 286(44):38533-38545. PubMed ID: 21900252 [TBL] [Abstract][Full Text] [Related]
15. A doppel alpha-helix peptide fragment mimics the copper(II) interactions with the whole protein. La Mendola D; Magrì A; Campagna T; Campitiello MA; Raiola L; Isernia C; Hansson O; Bonomo RP; Rizzarelli E Chemistry; 2010 Jun; 16(21):6212-23. PubMed ID: 20411530 [TBL] [Abstract][Full Text] [Related]
16. The non-octarepeat copper binding site of the prion protein is a key regulator of prion conversion. Giachin G; Mai PT; Tran TH; Salzano G; Benetti F; Migliorati V; Arcovito A; Della Longa S; Mancini G; D'Angelo P; Legname G Sci Rep; 2015 Oct; 5():15253. PubMed ID: 26482532 [TBL] [Abstract][Full Text] [Related]
17. Biophysical and morphological studies on the dual interaction of non-octarepeat prion protein peptides with copper and nucleic acids. Chaves JA; Sanchez-López C; Gomes MP; Sisnande T; Macedo B; de Oliveira VE; Braga CA; Rangel LP; Silva JL; Quintanar L; Cordeiro Y J Biol Inorg Chem; 2014 Aug; 19(6):839-51. PubMed ID: 24557708 [TBL] [Abstract][Full Text] [Related]
18. The amyloidogenic region of the human prion protein contains a high affinity (Met)(2)(His)(2) Cu(I) binding site. Badrick AC; Jones CE J Inorg Biochem; 2009 Aug; 103(8):1169-75. PubMed ID: 19615751 [TBL] [Abstract][Full Text] [Related]
19. Cross-talk between the octarepeat domain and the fifth binding site of prion protein driven by the interaction of copper(II) with the N-terminus. Di Natale G; Turi I; Pappalardo G; Sóvágó I; Rizzarelli E Chemistry; 2015 Mar; 21(10):4071-84. PubMed ID: 25649151 [TBL] [Abstract][Full Text] [Related]
20. Molecular features of the copper binding sites in the octarepeat domain of the prion protein. Burns CS; Aronoff-Spencer E; Dunham CM; Lario P; Avdievich NI; Antholine WE; Olmstead MM; Vrielink A; Gerfen GJ; Peisach J; Scott WG; Millhauser GL Biochemistry; 2002 Mar; 41(12):3991-4001. PubMed ID: 11900542 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]