BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 15146485)

  • 1. Antibody recognition of chiral surfaces. Structural models of antibody complexes with leucine-leucine-tyrosine crystal surfaces.
    Geva M; Eisenstein M; Addadi L
    Proteins; 2004 Jun; 55(4):862-73. PubMed ID: 15146485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antibody recognition of chiral surfaces. Enantiomorphous crystals of leucine-leucine-tyrosine.
    Geva M; Frolow F; Eisenstein M; Addadi L
    J Am Chem Soc; 2003 Jan; 125(3):696-704. PubMed ID: 12526669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two and three-dimensional pattern recognition of organized surfaces by specific antibodies.
    Addadi L; Rubin N; Scheffer L; Ziblat R
    Acc Chem Res; 2008 Feb; 41(2):254-64. PubMed ID: 18217721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular modeling of cardiac glycoside binding by the human sequence monoclonal antibody 1B3.
    Paula S; Monson N; Ball WJ
    Proteins; 2005 Aug; 60(3):382-91. PubMed ID: 15971203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of the stereoselectivity of an anti-amino acid antibody using molecular modeling and ligand docking.
    Ranieri DI; Corgliano DM; Franco EJ; Hofstetter H; Hofstetter O
    Chirality; 2008 Mar; 20(3-4):559-70. PubMed ID: 18172831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural scaffold of 18-crown-6 tetracarboxylic acid for optical resolution of chiral amino acid: X-ray crystal analyses and energy calculations of complexes of D- and L-isomers of tyrosine, isoleucine, methionine and phenylglycine.
    Nagata H; Nishi H; Kamigauchi M; Ishida T
    Org Biomol Chem; 2004 Dec; 2(23):3470-5. PubMed ID: 15565239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural details of HIV-1 recognition by the broadly neutralizing monoclonal antibody 2F5: epitope conformation, antigen-recognition loop mobility, and anion-binding site.
    Julien JP; Bryson S; Nieva JL; Pai EF
    J Mol Biol; 2008 Dec; 384(2):377-92. PubMed ID: 18824005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Substantial energetic improvement with minimal structural perturbation in a high affinity mutant antibody.
    Midelfort KS; Hernandez HH; Lippow SM; Tidor B; Drennan CL; Wittrup KD
    J Mol Biol; 2004 Oct; 343(3):685-701. PubMed ID: 15465055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tyrosine plays a dominant functional role in the paratope of a synthetic antibody derived from a four amino acid code.
    Fellouse FA; Barthelemy PA; Kelley RF; Sidhu SS
    J Mol Biol; 2006 Mar; 357(1):100-14. PubMed ID: 16413576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and chemical complementarity between antibodies and the crystal surfaces they recognize.
    Kessler N; Perl-Treves D; Addadi L; Eisenstein M
    Proteins; 1999 Feb; 34(3):383-94. PubMed ID: 10024024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular recognition by a binary code.
    Fellouse FA; Li B; Compaan DM; Peden AA; Hymowitz SG; Sidhu SS
    J Mol Biol; 2005 May; 348(5):1153-62. PubMed ID: 15854651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In silico analysis of antibody-carbohydrate interactions and its application to xenoreactive antibodies.
    Agostino M; Sandrin MS; Thompson PE; Yuriev E; Ramsland PA
    Mol Immunol; 2009 Dec; 47(2-3):233-46. PubMed ID: 19828202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular basis for the binding polyspecificity of an anti-cholera toxin peptide 3 monoclonal antibody.
    Otte L; Knaute T; Schneider-Mergener J; Kramer A
    J Mol Recognit; 2006; 19(1):49-59. PubMed ID: 16273596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy-based analysis and prediction of the orientation between light- and heavy-chain antibody variable domains.
    Narayanan A; Sellers BD; Jacobson MP
    J Mol Biol; 2009 May; 388(5):941-53. PubMed ID: 19324053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antibody multispecificity mediated by conformational diversity.
    James LC; Roversi P; Tawfik DS
    Science; 2003 Feb; 299(5611):1362-7. PubMed ID: 12610298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neutralization of NGF-TrkA receptor interaction by the novel antagonistic anti-TrkA monoclonal antibody MNAC13: a structural insight.
    Covaceuszach S; Cattaneo A; Lamba D
    Proteins; 2005 Feb; 58(3):717-27. PubMed ID: 15625712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystallographic and biochemical analysis of cocaine-degrading antibody 15A10.
    Larsen NA; de Prada P; Deng SX; Mittal A; Braskett M; Zhu X; Wilson IA; Landry DW
    Biochemistry; 2004 Jun; 43(25):8067-76. PubMed ID: 15209502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diversity and junction residues as hotspots of binding energy in an antibody neutralizing the dengue virus.
    Bedouelle H; Belkadi L; England P; Guijarro JI; Lisova O; Urvoas A; Delepierre M; Thullier P
    FEBS J; 2006 Jan; 273(1):34-46. PubMed ID: 16367746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An anti-urokinase plasminogen activator receptor (uPAR) antibody: crystal structure and binding epitope.
    Li Y; Parry G; Chen L; Callahan JA; Shaw DE; Meehan EJ; Mazar AP; Huang M
    J Mol Biol; 2007 Jan; 365(4):1117-29. PubMed ID: 17101149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of IL-17A in complex with a potent, fully human neutralizing antibody.
    Gerhardt S; Abbott WM; Hargreaves D; Pauptit RA; Davies RA; Needham MR; Langham C; Barker W; Aziz A; Snow MJ; Dawson S; Welsh F; Wilkinson T; Vaugan T; Beste G; Bishop S; Popovic B; Rees G; Sleeman M; Tuske SJ; Coales SJ; Hamuro Y; Russell C
    J Mol Biol; 2009 Dec; 394(5):905-21. PubMed ID: 19835883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.