These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 15146500)

  • 1. Prediction of the bonding states of cysteines using the support vector machines based on multiple feature vectors and cysteine state sequences.
    Chen YC; Lin YS; Lin CJ; Hwang JK
    Proteins; 2004 Jun; 55(4):1036-42. PubMed ID: 15146500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting the state of cysteines based on sequence information.
    Guang X; Guo Y; Xiao J; Wang X; Sun J; Xiong W; Li M
    J Theor Biol; 2010 Dec; 267(3):312-8. PubMed ID: 20826168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cooperativity of the oxidization of cysteines in globular proteins.
    Jiang-Ning S; Wei-Jiang L; Wen-Bo X
    J Theor Biol; 2004 Nov; 231(1):85-95. PubMed ID: 15363931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying cysteines and histidines in transition-metal-binding sites using support vector machines and neural networks.
    Passerini A; Punta M; Ceroni A; Rost B; Frasconi P
    Proteins; 2006 Nov; 65(2):305-16. PubMed ID: 16927295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of disulfide connectivity from protein sequences.
    Chen YC; Hwang JK
    Proteins; 2005 Nov; 61(3):507-12. PubMed ID: 16170781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of factors that induce cysteine bonding state.
    Karami Z; Abdolmaleki P; Rezaei MA; Jahandideh S; Asadabadi EB
    Comput Biol Med; 2009 Apr; 39(4):332-9. PubMed ID: 19246035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of protein-protein interaction sites using support vector machines.
    Koike A; Takagi T
    Protein Eng Des Sel; 2004 Feb; 17(2):165-73. PubMed ID: 15047913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of protein subcellular localization.
    Yu CS; Chen YC; Lu CH; Hwang JK
    Proteins; 2006 Aug; 64(3):643-51. PubMed ID: 16752418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Remote homolog detection using local sequence-structure correlations.
    Hou Y; Hsu W; Lee ML; Bystroff C
    Proteins; 2004 Nov; 57(3):518-30. PubMed ID: 15382242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disulfide connectivity prediction based on structural information without a prior knowledge of the bonding state of cysteines.
    Lin HH; Hsu JC; Hsu YN; Pan RH; Chen YF; Tseng LY
    Comput Biol Med; 2013 Nov; 43(11):1941-8. PubMed ID: 24209939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlation and prediction of gene expression level from amino acid and dipeptide composition of its protein.
    Raghava GP; Han JH
    BMC Bioinformatics; 2005 Mar; 6():59. PubMed ID: 15773999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SVM-Cabins: prediction of solvent accessibility using accumulation cutoff set and support vector machine.
    Wang JY; Lee HM; Ahmad S
    Proteins; 2007 Jul; 68(1):82-91. PubMed ID: 17436325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of pi-turns in proteins using PSI-BLAST profiles and secondary structure information.
    Wang Y; Xue ZD; Shi XH; Xu J
    Biochem Biophys Res Commun; 2006 Sep; 347(3):574-80. PubMed ID: 16844090
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of protein homo-oligomer types by pseudo amino acid composition: Approached with an improved feature extraction and Naive Bayes Feature Fusion.
    Zhang SW; Pan Q; Zhang HC; Shao ZC; Shi JY
    Amino Acids; 2006 Jun; 30(4):461-8. PubMed ID: 16773245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fine-grained protein fold assignment by support vector machines using generalized npeptide coding schemes and jury voting from multiple-parameter sets.
    Yu CS; Wang JY; Yang JM; Lyu PC; Lin CJ; Hwang JK
    Proteins; 2003 Mar; 50(4):531-6. PubMed ID: 12577258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting disulfide connectivity patterns.
    Lu CH; Chen YC; Yu CS; Hwang JK
    Proteins; 2007 May; 67(2):262-70. PubMed ID: 17285623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using Nearest Feature Line and Tunable Nearest Neighbor methods for prediction of protein subcellular locations.
    Gao QB; Wang ZZ
    Comput Biol Chem; 2005 Oct; 29(5):388-92. PubMed ID: 16213794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Better prediction of the location of alpha-turns in proteins with support vector machine.
    Wang Y; Xue Z; Xu J
    Proteins; 2006 Oct; 65(1):49-54. PubMed ID: 16894602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A machine learning based method for the prediction of secretory proteins using amino acid composition, their order and similarity-search.
    Garg A; Raghava GP
    In Silico Biol; 2008; 8(2):129-40. PubMed ID: 18928201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of the disulfide-bonding state of cysteines in proteins based on dipeptide composition.
    Song JN; Wang ML; Li WJ; Xu WB
    Biochem Biophys Res Commun; 2004 May; 318(1):142-7. PubMed ID: 15110765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.