These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. The rate-determining step in the rhodium-xantphos-catalysed hydroformylation of 1-octene. Zuidema E; Escorihuela L; Eichelsheim T; Carbó JJ; Bo C; Kamer PC; van Leeuwen PW Chemistry; 2008; 14(6):1843-53. PubMed ID: 18061923 [TBL] [Abstract][Full Text] [Related]
3. Activity of rhodium-catalyzed hydroformylation: added insight and predictions from theory. Sparta M; Børve KJ; Jensen VR J Am Chem Soc; 2007 Jul; 129(27):8487-99. PubMed ID: 17555314 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of ligand effects in the modified cobalt hydroformylation of 1-octene. Crystal structures of [Co(L)(CO)3]2 (L = PA-C5, PCy3 and PCyp3). Bungu PN; Otto S Dalton Trans; 2011 Sep; 40(36):9238-49. PubMed ID: 21829832 [TBL] [Abstract][Full Text] [Related]
5. Bicyclic phosphines as ligands for cobalt catalysed hydroformylation. Crystal structures of [Co(Phoban[3.3.1]-Q)(CO)(3)](2) (Q = C(2)H(5), C(5)H(11), C(3)H(6)NMe(2), C(6)H(11)). Bungu PN; Otto S Dalton Trans; 2007 Jul; (27):2876-84. PubMed ID: 17607402 [TBL] [Abstract][Full Text] [Related]
6. DFT study of the full catalytic cycle for the propene hydroformylation catalyzed by a heterobimetallic HPt(SnCl3)(PH3)2 model catalyst. da Silva JC; Dias RP; de Almeida WB; Rocha WR J Comput Chem; 2010 Jul; 31(10):1986-2000. PubMed ID: 20082381 [TBL] [Abstract][Full Text] [Related]
7. Theoretical study of reaction pathways for the rhodium phosphine-catalysed borylation of C-H bonds with pinacolborane. Lam WH; Lam KC; Lin Z; Shimada S; Perutz RN; Marder TB Dalton Trans; 2004 May; (10):1556-62. PubMed ID: 15252604 [TBL] [Abstract][Full Text] [Related]
8. Highly regioselective rhodium-catalysed hydroformylation of unsaturated esters: the first practical method for quaternary selective carbonylation. Clarke ML; Roff GJ Chemistry; 2006 Oct; 12(31):7978-86. PubMed ID: 16991187 [TBL] [Abstract][Full Text] [Related]
9. A novel dicationic phenoxaphosphino-modified Xantphos-type ligand: a ligand for highly active and selective, biphasic, rhodium catalysed hydroformylation in ionic liquids. Bronger RP; Silva SM; Kamer PC; van Leeuwen PW Dalton Trans; 2004 May; (10):1590-6. PubMed ID: 15252608 [TBL] [Abstract][Full Text] [Related]
10. The electron-poor phosphines P{C6H3(CF3)2-3,5}3 and P(C6F5)3 do not mimic phosphites as ligands for hydroformylation. A comparison of the coordination chemistry of P{C6H3(CF3)2-3,5}3 and P(C6F5)3 and the unexpectedly low hydroformylation activity of their rhodium complexes. Clarke ML; Ellis D; Mason KL; Orpen AG; Pringle PG; Wingad RL; Zaher DA; Baker RT Dalton Trans; 2005 Apr; (7):1294-300. PubMed ID: 15782267 [TBL] [Abstract][Full Text] [Related]
11. The mechanism for the rhodium-catalyzed decarbonylation of aldehydes: a combined experimental and theoretical study. Fristrup P; Kreis M; Palmelund A; Norrby PO; Madsen R J Am Chem Soc; 2008 Apr; 130(15):5206-15. PubMed ID: 18303836 [TBL] [Abstract][Full Text] [Related]
12. Bis-phosphites and bis-phosphinites based on distally-functionalised calix[4]arenes: coordination chemistry and use in rhodium-catalysed, low-pressure olefin hydroformylation. Steyer S; Jeunesse C; Harrowfield J; Matt D Dalton Trans; 2005 Apr; (7):1301-9. PubMed ID: 15782268 [TBL] [Abstract][Full Text] [Related]
13. Diastereoselective hydroformylation of 2-substituted allylic o-DPPB-esters-on the origin of 1,2-asymmetric induction. Breit B; Heckmann G; Zahn SK Chemistry; 2003 Jan; 9(2):425-34. PubMed ID: 12532291 [TBL] [Abstract][Full Text] [Related]
14. Origin of stereoinduction by chiral aminophosphane phosphinite ligands in enantioselective catalysis: asymmetric hydroformylation. Carbó JJ; Lledós A; Vogt D; Bo C Chemistry; 2006 Feb; 12(5):1457-67. PubMed ID: 16315195 [TBL] [Abstract][Full Text] [Related]
15. New hybrid bidentate ligands as precursors for smart catalysts. Goettmann F; Boissière C; Grosso D; Mercier F; Le Floch P; Sanchez C Chemistry; 2005 Dec; 11(24):7416-26. PubMed ID: 16224804 [TBL] [Abstract][Full Text] [Related]
16. Ligand and substrate effects on the mechanism of rhodium-catalyzed hydrogenation of enamides. Donoghue PJ; Helquist P; Wiest O J Org Chem; 2007 Feb; 72(3):839-47. PubMed ID: 17253803 [TBL] [Abstract][Full Text] [Related]
17. The Rh4(CO)12-catalyzed hydroformylation of 3,3-dimethylbut-1-ene promoted with HMn(CO)5. Bimetallic catalytic binuclear elimination as an origin for synergism in homogeneous catalysis. Li C; Widjaja E; Garland M J Am Chem Soc; 2003 May; 125(18):5540-8. PubMed ID: 12720468 [TBL] [Abstract][Full Text] [Related]
18. Mechanism of Ru(II)-catalyzed olefin insertion and C-H activation from quantum chemical studies. Oxgaard J; Goddard WA J Am Chem Soc; 2004 Jan; 126(2):442-3. PubMed ID: 14719922 [TBL] [Abstract][Full Text] [Related]
19. Computational evidence for the catalytic mechanism of glutaminyl cyclase. A DFT investigation. Calvaresi M; Garavelli M; Bottoni A Proteins; 2008 Nov; 73(3):527-38. PubMed ID: 18470930 [TBL] [Abstract][Full Text] [Related]
20. Importance of interfacial adsorption in the biphasic hydroformylation of higher olefins promoted by cyclodextrins: a molecular dynamics study at the decene/water interface. Sieffert N; Wipff G Chemistry; 2007; 13(7):1978-90. PubMed ID: 17143921 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]