BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 15146921)

  • 1. Study of microporosity of active carbon spheres using inverse gas chromatographic and static adsorption techniques.
    Singh GS; Lal D; Tripathi VS
    J Chromatogr A; 2004 May; 1036(2):189-95. PubMed ID: 15146921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of the dispersive component of the surface energy of active carbons as determined by inverse gas chromatography at zero surface coverage.
    Pérez-Mendoza M; Almazán-Almazán MC; Méndez-Liñán L; Domingo-García M; López-Garzón FJ
    J Chromatogr A; 2008 Dec; 1214(1-2):121-7. PubMed ID: 18995860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functionalization of porous siliceous materials, Part 2: Surface characterization by inverse gas chromatography.
    Bauer F; Meyer R; Czihal S; Bertmer M; Decker U; Naumov S; Uhlig H; Steinhart M; Enke D
    J Chromatogr A; 2019 Oct; 1603():297-310. PubMed ID: 31227363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative study on the gas-phase adsorption of hexane over zeolites by calorimetry and inverse gas chromatography.
    Díaz E; Ordóñez S; Auroux A
    J Chromatogr A; 2005 Nov; 1095(1-2):131-7. PubMed ID: 16275293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of specific surface areas in inverse gas chromatography studies at zero surface coverage.
    Almazán-Almazán MC; Pérez-Mendoza M; Fernández-Morales I; Domingo-García M; López-Garzón FJ
    J Chromatogr A; 2008 May; 1190(1-2):271-7. PubMed ID: 18394638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of the surface properties of kaolinite by inverse gas chromatography.
    Bilgiç C
    Water Sci Technol; 2018 May; 2017(2):319-328. PubMed ID: 29851384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of the temperature effect on the surface area of model organic molecules, the dispersive surface energy and the surface properties of solids by inverse gas chromatography.
    Hamieh T
    J Chromatogr A; 2020 Sep; 1627():461372. PubMed ID: 32823089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correct specific retention volume determination in inverse gas chromatography.
    Kondor A; Burnett DJ; Bismarck A; Williams DR
    J Chromatogr A; 2023 Jul; 1700():464009. PubMed ID: 37148568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of surface properties and Gutmann's Lewis acidity-basicity parameters of thiourea and melamine polymerized graphitic carbon nitride sheets by inverse gas chromatography.
    Sreekanth TVM; Basivi PK; Nagajyothi PC; Dillip GR; Shim J; Ko TJ; Yoo K
    J Chromatogr A; 2018 Dec; 1580():134-141. PubMed ID: 30389207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measuring the specific surface area (SSA) of freeze-dried biologics using inverse gas chromatography.
    Duralliu A; Matejtschuk P; Williams DR
    Eur J Pharm Biopharm; 2019 Sep; 142():216-221. PubMed ID: 31233863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Introduction into the characterisation of porous materials by inverse gas chromatography.
    Thielmann F
    J Chromatogr A; 2004 May; 1037(1-2):115-23. PubMed ID: 15214663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface characterization of industrial fibers with inverse gas chromatography.
    van Asten A; van Veenendaal N; Koster S
    J Chromatogr A; 2000 Aug; 888(1-2):175-96. PubMed ID: 10949485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of the acid/base properties of MgY and NH4Y molecular sieves by inverse gas chromatography.
    Bilgiç C; Tümsek F
    J Chromatogr A; 2007 Aug; 1162(1):83-9. PubMed ID: 17451721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rediscovering the problem of interpretation of chromatographically determined enthalpy and entropy of adsorption of different adsorbates on carbon materials. Critical appraisal of literature data.
    Grajek H
    J Chromatogr A; 2007 Mar; 1145(1-2):1-50. PubMed ID: 17307187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of the interaction polybutadiene/fillers using inverse gas chromatography.
    Calvet R; Del Confetto S; Balard H; Brendlé E; Donnet JB
    J Chromatogr A; 2012 Aug; 1253():164-70. PubMed ID: 22819369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New Methodology to Study the Dispersive Component of the Surface Energy and Acid-Base Properties of Silica Particles by Inverse Gas Chromatography at Infinite Dilution.
    Hamieh T
    J Chromatogr Sci; 2022 Feb; 60(2):126-142. PubMed ID: 34096571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface energy characteristics of toner particles by automated inverse gas chromatography.
    Seger LH; Wouters ME; Bos M; van den Berg JW; Vancso GJ
    J Chromatogr A; 2002 Sep; 969(1-2):215-27. PubMed ID: 12385393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of Dorris-Gray and Schultz methods for the calculation of surface dispersive free energy by inverse gas chromatography.
    Shi B; Wang Y; Jia L
    J Chromatogr A; 2011 Feb; 1218(6):860-2. PubMed ID: 21195412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption of volatile organic compounds onto carbon nanotubes, carbon nanofibers, and high-surface-area graphites.
    Díaz E; Ordóñez S; Vega A
    J Colloid Interface Sci; 2007 Jan; 305(1):7-16. PubMed ID: 17046777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of the microporosity and surface chemistry of polymeric resins on adsorptive properties toward phenol.
    Wu Y; Li Z; Xi H
    J Hazard Mater; 2004 Sep; 113(1-3):131-5. PubMed ID: 15363522
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.