BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 15147187)

  • 1. An atomic level model for the interactions of molybdenum nitrogenase with carbon monoxide, acetylene, and ethylene.
    Durrant MC
    Biochemistry; 2004 May; 43(20):6030-42. PubMed ID: 15147187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron-transfer chemistry of the iron-molybdenum cofactor of nitrogenase: delocalized and localized reduced states of FeMoco which allow binding of carbon monoxide to iron and molybdenum.
    Pickett CJ; Vincent KA; Ibrahim SK; Gormal CA; Smith BE; Best SP
    Chemistry; 2003 Jan; 9(1):76-87. PubMed ID: 12506366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron inventory, kinetic assignment (E(n)), structure, and bonding of nitrogenase turnover intermediates with C2H2 and CO.
    Lee HI; Sørlie M; Christiansen J; Yang TC; Shao J; Dean DR; Hales BJ; Hoffman BM
    J Am Chem Soc; 2005 Nov; 127(45):15880-90. PubMed ID: 16277531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differentiation of acetylene-reduction sites by stereoselective proton addition during Azotobacter vinelandii nitrogenase-catalyzed C2D2 reduction.
    Han J; Newton WE
    Biochemistry; 2004 Mar; 43(10):2947-56. PubMed ID: 15005631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Density functional theory calculations and exploration of a possible mechanism of N2 reduction by nitrogenase.
    Huniar U; Ahlrichs R; Coucouvanis D
    J Am Chem Soc; 2004 Mar; 126(8):2588-601. PubMed ID: 14982469
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substrate interactions with nitrogenase: Fe versus Mo.
    Seefeldt LC; Dance IG; Dean DR
    Biochemistry; 2004 Feb; 43(6):1401-9. PubMed ID: 14769015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The hydrogen chemistry of the FeMo-co active site of nitrogenase.
    Dance I
    J Am Chem Soc; 2005 Aug; 127(31):10925-42. PubMed ID: 16076199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calculated vibrational frequencies for FeMo-co, the active site of nitrogenase, bearing hydrogen atoms and carbon monoxide.
    Dance I
    Dalton Trans; 2011 Jun; 40(24):6480-9. PubMed ID: 21584340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanistic significance of the preparatory migration of hydrogen atoms around the FeMo-co active site of nitrogenase.
    Dance I
    Biochemistry; 2006 May; 45(20):6328-40. PubMed ID: 16700544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The chemical mechanism of nitrogenase: calculated details of the intramolecular mechanism for hydrogenation of eta(2)-N(2) on FeMo-co to NH(3).
    Dance I
    Dalton Trans; 2008 Nov; (43):5977-91. PubMed ID: 19082054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Density functional study of the electric hyperfine interactions and the redox-structural correlations in the cofactor of nitrogenase. Analysis of general trends in (57)Fe isomer shifts.
    Vrajmasu V; Münck E; Bominaar EL
    Inorg Chem; 2003 Sep; 42(19):5974-88. PubMed ID: 12971768
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of CO binding and release from Mo-nitrogenase during catalytic turnover.
    Cameron LM; Hales BJ
    Biochemistry; 1998 Jun; 37(26):9449-56. PubMed ID: 9649328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FeMo cofactor of nitrogenase: energetics and local interactions in the protein environment.
    Lovell T; Li J; Case DA; Noodleman L
    J Biol Inorg Chem; 2002 Sep; 7(7-8):735-49. PubMed ID: 12203010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New insights into structure-function relationships in nitrogenase: A 1.6 A resolution X-ray crystallographic study of Klebsiella pneumoniae MoFe-protein.
    Mayer SM; Lawson DM; Gormal CA; Roe SM; Smith BE
    J Mol Biol; 1999 Oct; 292(4):871-91. PubMed ID: 10525412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon Monoxide Binding to the Iron-Molybdenum Cofactor of Nitrogenase: a Detailed Quantum Mechanics/Molecular Mechanics Investigation.
    Spiller N; Bjornsson R; DeBeer S; Neese F
    Inorg Chem; 2021 Dec; 60(23):18031-18047. PubMed ID: 34767349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural conversions of molybdenum-iron-sulfur edge-bridged double cubanes and P(n)-type clusters topologically related to the nitrogenase P-cluster.
    Zhang Y; Holm RH
    Inorg Chem; 2004 Jan; 43(2):674-82. PubMed ID: 14731029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural characterization of the nitrogenase molybdenum-iron protein with the substrate acetylene trapped near the active site.
    Keable SM; Vertemara J; Zadvornyy OA; Eilers BJ; Danyal K; Rasmussen AJ; De Gioia L; Zampella G; Seefeldt LC; Peters JW
    J Inorg Biochem; 2018 Mar; 180():129-134. PubMed ID: 29275221
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An organometallic intermediate during alkyne reduction by nitrogenase.
    Lee HI; Igarashi RY; Laryukhin M; Doan PE; Dos Santos PC; Dean DR; Seefeldt LC; Hoffman BM
    J Am Chem Soc; 2004 Aug; 126(31):9563-9. PubMed ID: 15291559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synergic binding of carbon monoxide and cyanide to the FeMo cofactor of nitrogenase: relic chemistry of an ancient enzyme?
    Pickett CJ; Vincent KA; Ibrahim SK; Gormal CA; Smith BE; Fairhurst SA; Best SP
    Chemistry; 2004 Oct; 10(19):4770-6. PubMed ID: 15372690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of a tungsten-substituted nitrogenase isolated from Rhodobacter capsulatus.
    Siemann S; Schneider K; Oley M; Müller A
    Biochemistry; 2003 Apr; 42(13):3846-57. PubMed ID: 12667075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.