BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 15147323)

  • 1. Role of the Otx1 gene in cell differentiation of mammalian cortex.
    Pantò MR; Zappalà A; Tuorto F; Cicirata F
    Eur J Neurosci; 2004 May; 19(10):2893-902. PubMed ID: 15147323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Effect of rabies virus infection on the expression of parvalbumin, calbindin and calretinin in mouse cerebral cortex].
    Torres-Fernández O; Yepes GE; Gómez JE; Pimienta HJ
    Biomedica; 2004 Mar; 24(1):63-78. PubMed ID: 15239603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cortical and brainstem neurons containing calcium-binding proteins in a murine model of Duchenne's muscular dystrophy: selective changes in the sensorimotor cortex.
    Carretta D; Santarelli M; Vanni D; Ciabatti S; Sbriccoli A; Pinto F; Minciacchi D
    J Comp Neurol; 2003 Jan; 456(1):48-59. PubMed ID: 12508313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The calcium binding proteins parvalbumin and calbindin-D 28K form complementary patterns in the cat superior colliculus.
    Mize RR; Luo Q; Butler G; Jeon CJ; Nabors B
    J Comp Neurol; 1992 Jun; 320(2):243-56. PubMed ID: 1619052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulated nuclear trafficking of the homeodomain protein otx1 in cortical neurons.
    Zhang YA; Okada A; Lew CH; McConnell SK
    Mol Cell Neurosci; 2002 Mar; 19(3):430-46. PubMed ID: 11906214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immunohistochemical localization of calcium-binding proteins, parvalbumin and calbindin-D 28k, in the adult and developing visual cortex of cats: a light and electron microscopic study.
    Stichel CC; Singer W; Heizmann CW; Norman AW
    J Comp Neurol; 1987 Aug; 262(4):563-77. PubMed ID: 3667965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of neuronal subpopulations in mice over-expressing suppressor of cytokine signaling-2.
    Ransome MI; Turnley AM
    Neuroscience; 2005; 132(3):673-87. PubMed ID: 15837129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of the calcium-binding protein parvalbumin and calbindin in monkey striate cortex.
    Hendrickson AE; Van Brederode JF; Mulligan KA; Celio MR
    J Comp Neurol; 1991 May; 307(4):626-46. PubMed ID: 1651352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Birth-date-dependent segregation of the mouse cerebral cortical neurons in reaggregation cultures.
    Ajioka I; Nakajima K
    Eur J Neurosci; 2005 Jul; 22(2):331-42. PubMed ID: 16045486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The calcium binding proteins calbindin, parvalbumin, and calretinin have specific patterns of expression in the gray matter of cat spinal cord.
    Anelli R; Heckman CJ
    J Neurocytol; 2005 Dec; 34(6):369-85. PubMed ID: 16902759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphological diversity of nitric oxide synthesising neurons in mammalian cerebral cortex.
    Yan XX; Garey LJ
    J Hirnforsch; 1997; 38(2):165-72. PubMed ID: 9176729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium-binding proteins in the human developing brain.
    Ulfig N
    Adv Anat Embryol Cell Biol; 2002; 165():III-IX, 1-92. PubMed ID: 12236093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial analysis reveals alterations of parvalbumin- and calbindin-positive local circuit neurons in the cerebral cortex of mutant mdx mice.
    Carretta D; Santarelli M; Sbriccoli A; Pinto F; Catini C; Minciacchi D
    Brain Res; 2004 Jul; 1016(1):1-11. PubMed ID: 15234246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distribution of calcium-binding proteins within the parallel visual pathways of a primate (Galago crassicaudatus).
    Johnson JK; Casagrande VA
    J Comp Neurol; 1995 May; 356(2):238-60. PubMed ID: 7629317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A quantitative analysis of parvalbumin neurons in rabbit auditory neocortex.
    McMullen NT; Smelser CB; de Venecia RK
    J Comp Neurol; 1994 Nov; 349(4):493-511. PubMed ID: 7860786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of parvalbumin and calbindin D28k in experimental scrapie.
    Voigtländer T; Unterberger U; Guentchev M; Schwaller B; Celio MR; Meyer M; Budka H
    Neuropathol Appl Neurobiol; 2008 Aug; 34(4):435-45. PubMed ID: 18005331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative distribution of parvalbumin, calretinin, and calbindin D-28k immunoreactive neurons in the visual cortex of normal and Alzheimer cases.
    Leuba G; Kraftsik R; Saini K
    Exp Neurol; 1998 Aug; 152(2):278-91. PubMed ID: 9710527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Establishment of framework of the cortical area is influenced by Otx1.
    Ando K; Yagi H; Suda Y; Aizawa S; Sakashita M; Nagano T; Terashima T; Sato M
    Neurosci Res; 2008 Apr; 60(4):457-9. PubMed ID: 18294714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic patterns of colocalization of calbindin, parvalbumin and GABA in subpopulations of mouse basolateral amygdalar cells during development.
    Dávila JC; Olmos L; Legaz I; Medina L; Guirado S; Real MA
    J Chem Neuroanat; 2008 Jan; 35(1):67-76. PubMed ID: 17681450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diverse interneuron populations have highly specific interconnectivity in the rat piriform cortex.
    Gavrilovici C; D'Alfonso S; Poulter MO
    J Comp Neurol; 2010 May; 518(9):1570-88. PubMed ID: 20187146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.