BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 15147507)

  • 1. Hypoxia induces adenosine release from the rat carotid body.
    Conde SV; Monteiro EC
    J Neurochem; 2004 Jun; 89(5):1148-56. PubMed ID: 15147507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preferential release of ATP and its extracellular catabolism as a source of adenosine upon high- but not low-frequency stimulation of rat hippocampal slices.
    Cunha RA; Vizi ES; Ribeiro JA; Sebastião AM
    J Neurochem; 1996 Nov; 67(5):2180-7. PubMed ID: 8863529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mechanism of adenosine release from hypoxic rat liver cells.
    Belloni FL; Elkin PL; Giannotto B
    Br J Pharmacol; 1985 Jun; 85(2):441-6. PubMed ID: 4027478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hypoxic intensity: a determinant for the contribution of ATP and adenosine to the genesis of carotid body chemosensory activity.
    Conde SV; Monteiro EC; Rigual R; Obeso A; Gonzalez C
    J Appl Physiol (1985); 2012 Jun; 112(12):2002-10. PubMed ID: 22500005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Myocardial adenosine formation during hypoxia: effects of ecto-5'-nucleotidase inhibition.
    Headrick JP; Matherne GP; Berne RM
    J Mol Cell Cardiol; 1992 Mar; 24(3):295-303. PubMed ID: 1625350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adenosine production and release by adult rat cardiocytes.
    Bukoski RD; Sparks HV
    J Mol Cell Cardiol; 1986 Jun; 18(6):595-605. PubMed ID: 3016289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of ecto-5'-nucleotidase by protein kinase C attenuates irreversible cellular injury due to hypoxia and reoxygenation in rat cardiomyocytes.
    Kitakaze M; Minamino T; Node K; Komamura K; Inoue M; Hori M; Kamada T
    J Mol Cell Cardiol; 1996 Sep; 28(9):1945-55. PubMed ID: 8899553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chronic caffeine intake in adult rat inhibits carotid body sensitization produced by chronic sustained hypoxia but maintains intact chemoreflex output.
    Conde SV; Ribeiro MJ; Obeso A; Rigual R; Monteiro EC; Gonzalez C
    Mol Pharmacol; 2012 Dec; 82(6):1056-65. PubMed ID: 22930709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation of nicotinic ACh receptors with alpha4 subunits induces adenosine release at the rat carotid body.
    Conde SV; Monteiro EC
    Br J Pharmacol; 2006 Apr; 147(7):783-9. PubMed ID: 16444287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Astrocytes and neurons: different roles in regulating adenosine levels.
    Parkinson FE; Xiong W; Zamzow CR
    Neurol Res; 2005 Mar; 27(2):153-60. PubMed ID: 15829178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ecto-5'-nucleotidase (CD73) regulates peripheral chemoreceptor activity and cardiorespiratory responses to hypoxia.
    Holmes AP; Ray CJ; Pearson SA; Coney AM; Kumar P
    J Physiol; 2018 Aug; 596(15):3137-3148. PubMed ID: 28560821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of dipyridamole on glomerular mesangial cell ecto-5'-nucleotidase expression.
    Stefanović V; Savić V; Vlahović P
    Experientia; 1994 Oct; 50(10):943-6. PubMed ID: 7957770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adenosine uptake-dependent C6 cell growth inhibition.
    Ohkubo S; Nagata K; Nakahata N
    Eur J Pharmacol; 2007 Dec; 577(1-3):35-43. PubMed ID: 17878054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of adenosine and ATP to the carotid body chemosensory activity in ageing.
    Sacramento JF; Olea E; Ribeiro MJ; Prieto-Lloret J; Melo BF; Gonzalez C; Martins FO; Monteiro EC; Conde SV
    J Physiol; 2019 Oct; 597(19):4991-5008. PubMed ID: 31426127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extracellular purines from cells of seminiferous tubules.
    Gelain DP; de Souza LF; Bernard EA
    Mol Cell Biochem; 2003 Mar; 245(1-2):1-9. PubMed ID: 12708739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of nucleoside transport inhibitors and adenine/ribose supply on ATP concentration and adenosine production in cardiac myocytes.
    Kalsi KK; Smolenski RT; Yacoub MH
    Mol Cell Biochem; 1998 Mar; 180(1-2):193-9. PubMed ID: 9546646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extracellular metabolism of adenine nucleotides and adenosine in the innervated skeletal muscle of the frog.
    Cunha RA; Sebastião AM
    Eur J Pharmacol; 1991 May; 197(1):83-92. PubMed ID: 1654262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intracellular adenosine formation and its carrier-mediated release in cultured embryonic chick heart cells.
    Meghji P; Rubio R; Berne RM
    Life Sci; 1988; 43(23):1851-9. PubMed ID: 2849008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Profiles for ATP and adenosine release at the carotid body in response to O2 concentrations.
    Conde SV; Monteiro EC
    Adv Exp Med Biol; 2006; 580():179-84; discussion 351-9. PubMed ID: 16683716
    [No Abstract]   [Full Text] [Related]  

  • 20. Extracellular formation and uptake of adenosine during skeletal muscle contraction in the rat: role of adenosine transporters.
    Lynge J; Juel C; Hellsten Y
    J Physiol; 2001 Dec; 537(Pt 2):597-605. PubMed ID: 11731589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.