These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 15147803)

  • 21. Glucose oxidase immobilized polyethylene-g-acrylic acid membrane for glucose oxidase sensor.
    Hsiue GH; Wang CC
    Biotechnol Bioeng; 1990 Oct; 36(8):811-5. PubMed ID: 18597278
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Poly(acrylonitrile)chitosan composite membranes for urease immobilization.
    Gabrovska K; Georgieva A; Godjevargova T; Stoilova O; Manolova N
    J Biotechnol; 2007 May; 129(4):674-80. PubMed ID: 17320233
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of L-leucine graft content on aqueous solution behavior and membrane-lytic activity of a pH-responsive pseudopeptide.
    Chen R; Khormaee S; Eccleston ME; Slater NK
    Biomacromolecules; 2009 Sep; 10(9):2601-8. PubMed ID: 19642668
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Intelligent polymeric systems for glucose-responsive insulin delivery].
    Qu J; Chu L; Li Y; Chen W; Zheng C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Dec; 21(6):1028-30. PubMed ID: 15646358
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Using Excimer Laser for Manufacturing Stimuli Responsive Membranes.
    Sancaktar E
    Membranes (Basel); 2023 Mar; 13(4):. PubMed ID: 37103825
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A porous poly(acrylonitrile-co-acrylic acid) film-based glucose biosensor constructed by electrochemical entrapment.
    Shan D; He Y; Wang S; Xue H; Zheng H
    Anal Biochem; 2006 Sep; 356(2):215-21. PubMed ID: 16842730
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An insulin-releasing system responsive to glucose: thermodynamic evaluation of permeability properties.
    Casolaro M; Barbucci R
    Int J Artif Organs; 1991 Nov; 14(11):732-8. PubMed ID: 1757161
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The delivery of insulin from aqueous and non-aqueous reservoirs governed by a glucose sensitive gel membrane.
    Taylor MJ; Tanna S; Taylor PM; Adams G
    J Drug Target; 1995; 3(3):209-16. PubMed ID: 8705254
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Glucose-responsive polymer bearing a novel phenylborate derivative as a glucose-sensing moiety operating at physiological pH conditions.
    Matsumoto A; Ikeda S; Harada A; Kataoka K
    Biomacromolecules; 2003; 4(5):1410-6. PubMed ID: 12959613
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Covalent immobilization of glucose oxidase onto new modified acrylonitrile copolymer/silica gel hybrid supports.
    Godjevargova T; Nenkova R; Dimova N
    Macromol Biosci; 2005 Aug; 5(8):760-6. PubMed ID: 16080168
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Preparation of an extractant-impregnated porous membrane for the high-speed separation of a metal ion.
    Asai S; Watanabe K; Sugo T; Saito K
    J Chromatogr A; 2005 Nov; 1094(1-2):158-64. PubMed ID: 16257302
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Novel polyelectrolyte complexes based on poly(methacrylic acid)-bis(2-aminopropyl)poly(ethylene glycol) for oral protein delivery.
    Sajeesh S; Sharma CP
    J Biomater Sci Polym Ed; 2007; 18(9):1125-39. PubMed ID: 17931503
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Determination of diffusion coefficients of peptides and prediction of permeability through a porous membrane.
    Hosoya O; Chono S; Saso Y; Juni K; Morimoto K; Seki T
    J Pharm Pharmacol; 2004 Dec; 56(12):1501-7. PubMed ID: 15563756
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A soft and flexible biosensor using a phospholipid polymer for continuous glucose monitoring.
    Chu M; Kudo H; Shirai T; Miyajima K; Saito H; Morimoto N; Yano K; Iwasaki Y; Akiyoshi K; Mitsubayashi K
    Biomed Microdevices; 2009 Aug; 11(4):837-42. PubMed ID: 19365733
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multi-ion-crosslinked nanoparticles with pH-responsive characteristics for oral delivery of protein drugs.
    Lin YH; Sonaje K; Lin KM; Juang JH; Mi FL; Yang HW; Sung HW
    J Control Release; 2008 Dec; 132(2):141-9. PubMed ID: 18817821
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Self-assembling nanocomplexes from insulin and water-soluble branched polyesters, poly[(vinyl-3-(diethylamino)- propylcarbamate-co-(vinyl acetate)-co-(vinyl alcohol)]-graft- poly(L-lactic acid): a novel carrier for transmucosal delivery of peptides.
    Simon M; Wittmar M; Bakowsky U; Kissel T
    Bioconjug Chem; 2004; 15(4):841-9. PubMed ID: 15264872
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mucosal insulin delivery systems based on complexation polymer hydrogels: effect of particle size on insulin enteral absorption.
    Morishita M; Goto T; Peppas NA; Joseph JI; Torjman MC; Munsick C; Nakamura K; Yamagata T; Takayama K; Lowman AM
    J Control Release; 2004 May; 97(1):115-24. PubMed ID: 15147809
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Experimental study of arsenic removal by direct contact membrane distillation.
    Qu D; Wang J; Hou D; Luan Z; Fan B; Zhao C
    J Hazard Mater; 2009 Apr; 163(2-3):874-9. PubMed ID: 18783884
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stimuli-responsive smart gating membranes.
    Liu Z; Wang W; Xie R; Ju XJ; Chu LY
    Chem Soc Rev; 2016 Feb; 45(3):460-75. PubMed ID: 26595416
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Smart gating membranes with in situ self-assembled responsive nanogels as functional gates.
    Luo F; Xie R; Liu Z; Ju XJ; Wang W; Lin S; Chu LY
    Sci Rep; 2015 Oct; 5():14708. PubMed ID: 26434387
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.