These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Preparation, characterization, and in vitro evaluation of physostigmine-loaded poly(ortho ester) and poly(ortho ester)/poly(D,L-lactide-co-glycolide) blend microspheres fabricated by spray drying. Wang L; Chaw CS; Yang YY; Moochhala SM; Zhao B; Ng S; Heller J Biomaterials; 2004 Jul; 25(16):3275-82. PubMed ID: 14980422 [TBL] [Abstract][Full Text] [Related]
5. Cartilage regeneration using mesenchymal stem cells and a three-dimensional poly-lactic-glycolic acid (PLGA) scaffold. Uematsu K; Hattori K; Ishimoto Y; Yamauchi J; Habata T; Takakura Y; Ohgushi H; Fukuchi T; Sato M Biomaterials; 2005 Jul; 26(20):4273-9. PubMed ID: 15683651 [TBL] [Abstract][Full Text] [Related]
6. Hyaluronic acid modified biodegradable scaffolds for cartilage tissue engineering. Yoo HS; Lee EA; Yoon JJ; Park TG Biomaterials; 2005 May; 26(14):1925-33. PubMed ID: 15576166 [TBL] [Abstract][Full Text] [Related]
7. Robust cell integration from co-transplantation of biodegradable MMP2-PLGA microspheres with retinal progenitor cells. Yao J; Tucker BA; Zhang X; Checa-Casalengua P; Herrero-Vanrell R; Young MJ Biomaterials; 2011 Feb; 32(4):1041-50. PubMed ID: 21030072 [TBL] [Abstract][Full Text] [Related]
8. Effect of poly-L-lysine coating on retinoic acid-loaded PLGA microspheres in the differentiation of carcinoma stem cells into neural cells. Nojehdehian H; Moztarzadeh F; Baharvand H; Mehrjerdi NZ; Nazarian H; Tahriri M Int J Artif Organs; 2010 Oct; 33(10):721-30. PubMed ID: 21058269 [TBL] [Abstract][Full Text] [Related]
9. The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis. Sung HJ; Meredith C; Johnson C; Galis ZS Biomaterials; 2004 Nov; 25(26):5735-42. PubMed ID: 15147819 [TBL] [Abstract][Full Text] [Related]
10. Preparation and surface characterization of poly-L-lysine-coated PLGA microsphere scaffolds containing retinoic acid for nerve tissue engineering: in vitro study. Nojehdehian H; Moztarzadeh F; Baharvand H; Nazarian H; Tahriri M Colloids Surf B Biointerfaces; 2009 Oct; 73(1):23-9. PubMed ID: 19520554 [TBL] [Abstract][Full Text] [Related]
11. Modeling the adhesion of human embryonic stem cells to poly(lactic-co-glycolic acid) surfaces in a 3D environment. Gao SY; Lees JG; Wong JC; Croll TI; George P; Cooper-White JJ; Tuch BE J Biomed Mater Res A; 2010 Feb; 92(2):683-92. PubMed ID: 19247993 [TBL] [Abstract][Full Text] [Related]
12. Modulation of protein delivery from modular polymer scaffolds. Lee M; Chen TT; Iruela-Arispe ML; Wu BM; Dunn JC Biomaterials; 2007 Apr; 28(10):1862-70. PubMed ID: 17184836 [TBL] [Abstract][Full Text] [Related]
13. PHBV microspheres--PLGA matrix composite scaffold for bone tissue engineering. Huang W; Shi X; Ren L; Du C; Wang Y Biomaterials; 2010 May; 31(15):4278-85. PubMed ID: 20199806 [TBL] [Abstract][Full Text] [Related]
14. Microsphere size effects on embryoid body incorporation and embryonic stem cell differentiation. Carpenedo RL; Seaman SA; McDevitt TC J Biomed Mater Res A; 2010 Aug; 94(2):466-75. PubMed ID: 20213812 [TBL] [Abstract][Full Text] [Related]
15. Poly(lactide-co-glycolide) microspheres as a moldable scaffold for cartilage tissue engineering. Mercier NR; Costantino HR; Tracy MA; Bonassar LJ Biomaterials; 2005 May; 26(14):1945-52. PubMed ID: 15576168 [TBL] [Abstract][Full Text] [Related]
16. Open macroporous poly(lactic-co-glycolic Acid) microspheres as an injectable scaffold for cartilage tissue engineering. Kang SW; La WG; Kim BS J Biomater Sci Polym Ed; 2009; 20(3):399-409. PubMed ID: 19192363 [TBL] [Abstract][Full Text] [Related]
17. Enhancement of ectopic bone formation by bone morphogenetic protein-2 released from a heparin-conjugated poly(L-lactic-co-glycolic acid) scaffold. Jeon O; Song SJ; Kang SW; Putnam AJ; Kim BS Biomaterials; 2007 Jun; 28(17):2763-71. PubMed ID: 17350678 [TBL] [Abstract][Full Text] [Related]
19. Characterization of porous poly(D,L-lactic-co-glycolic acid) sponges fabricated by supercritical CO2 gas-foaming method as a scaffold for three-dimensional growth of Hep3B cells. Zhu XH; Lee LY; Jackson JS; Tong YW; Wang CH Biotechnol Bioeng; 2008 Aug; 100(5):998-1009. PubMed ID: 18551526 [TBL] [Abstract][Full Text] [Related]
20. Surface modification of PLGA microspheres. Müller M; Vörös J; Csúcs G; Walter E; Danuser G; Merkle HP; Spencer ND; Textor M J Biomed Mater Res A; 2003 Jul; 66(1):55-61. PubMed ID: 12833431 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]