BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 15147879)

  • 1. Regulation of phosphatidylcholine biosynthesis under salt stress involves choline kinases in Arabidopsis thaliana.
    Tasseva G; Richard L; Zachowski A
    FEBS Lett; 2004 May; 566(1-3):115-20. PubMed ID: 15147879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional characterization of a glycine-rich RNA-binding protein 2 in Arabidopsis thaliana under abiotic stress conditions.
    Kim JY; Park SJ; Jang B; Jung CH; Ahn SJ; Goh CH; Cho K; Han O; Kang H
    Plant J; 2007 May; 50(3):439-51. PubMed ID: 17376161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A CDP-choline pathway for phosphatidylcholine biosynthesis in Treponema denticola.
    Kent C; Gee P; Lee SY; Bian X; Fenno JC
    Mol Microbiol; 2004 Jan; 51(2):471-81. PubMed ID: 14756787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From yeast to humans - roles of the Kennedy pathway for phosphatidylcholine synthesis.
    McMaster CR
    FEBS Lett; 2018 Apr; 592(8):1256-1272. PubMed ID: 29178478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isozyme-specific modes of activation of CTP:phosphorylcholine cytidylyltransferase in Arabidopsis thaliana at low temperature.
    Inatsugi R; Kawai H; Yamaoka Y; Yu Y; Sekiguchi A; Nakamura M; Nishida I
    Plant Cell Physiol; 2009 Oct; 50(10):1727-35. PubMed ID: 19667100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fatty acid desaturase-6 (Fad6) is required for salt tolerance in Arabidopsis thaliana.
    Zhang JT; Zhu JQ; Zhu Q; Liu H; Gao XS; Zhang HX
    Biochem Biophys Res Commun; 2009 Dec; 390(3):469-74. PubMed ID: 19799856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential transcript regulation in Arabidopsis thaliana and the halotolerant Lobularia maritima indicates genes with potential function in plant salt adaptation.
    Popova OV; Yang O; Dietz KJ; Golldack D
    Gene; 2008 Nov; 423(2):142-8. PubMed ID: 18703123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional characterization of DEAD-box RNA helicases in Arabidopsis thaliana under abiotic stress conditions.
    Kim JS; Kim KA; Oh TR; Park CM; Kang H
    Plant Cell Physiol; 2008 Oct; 49(10):1563-71. PubMed ID: 18725370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. VERNALIZATION INSENSITIVE 3 (VIN3) is required for the response of Arabidopsis thaliana seedlings exposed to low oxygen conditions.
    Bond DM; Wilson IW; Dennis ES; Pogson BJ; Jean Finnegan E
    Plant J; 2009 Aug; 59(4):576-87. PubMed ID: 19392705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NADK3, a novel cytoplasmic source of NADPH, is required under conditions of oxidative stress and modulates abscisic acid responses in Arabidopsis.
    Chai MF; Wei PC; Chen QJ; An R; Chen J; Yang S; Wang XC
    Plant J; 2006 Sep; 47(5):665-74. PubMed ID: 16856986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Arabidopsis basic leucine zipper transcription factor AtbZIP24 regulates complex transcriptional networks involved in abiotic stress resistance.
    Yang O; Popova OV; Süthoff U; Lüking I; Dietz KJ; Golldack D
    Gene; 2009 May; 436(1-2):45-55. PubMed ID: 19248824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of transgenic Arabidopsis plants overexpressing GR-RBP4 under high salinity, dehydration, or cold stress.
    Kwak KJ; Kim YO; Kang H
    J Exp Bot; 2005 Nov; 56(421):3007-16. PubMed ID: 16207746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overexpression of Arabidopsis ZEP enhances tolerance to osmotic stress.
    Park HY; Seok HY; Park BK; Kim SH; Goh CH; Lee BH; Lee CH; Moon YH
    Biochem Biophys Res Commun; 2008 Oct; 375(1):80-5. PubMed ID: 18680727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cold shock domain proteins affect seed germination and growth of Arabidopsis thaliana under abiotic stress conditions.
    Park SJ; Kwak KJ; Oh TR; Kim YO; Kang H
    Plant Cell Physiol; 2009 Apr; 50(4):869-78. PubMed ID: 19258348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissecting salt stress pathways.
    Ma S; Gong Q; Bohnert HJ
    J Exp Bot; 2006; 57(5):1097-107. PubMed ID: 16510518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism by which ethanol inhibits phosphatidylcholine biosynthesis in human leukemic monocyte-like U937 cells.
    Chu AJ
    Cell Biochem Funct; 1994 Jan; 12(1):45-55. PubMed ID: 8168230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GhDREB1 enhances abiotic stress tolerance, delays GA-mediated development and represses cytokinin signalling in transgenic Arabidopsis.
    Huang JG; Yang M; Liu P; Yang GD; Wu CA; Zheng CC
    Plant Cell Environ; 2009 Aug; 32(8):1132-45. PubMed ID: 19422608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of transgenic Arabidopsis plants overexpressing high mobility group B proteins under high salinity, drought or cold stress.
    Kwak KJ; Kim JY; Kim YO; Kang H
    Plant Cell Physiol; 2007 Feb; 48(2):221-31. PubMed ID: 17169924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of phosphatidylcholine biosynthetic enzymes during early embryogenesis in the amphibian Bufo arenarum.
    Fernández-Bussy R; Mouguelar V; Banchio C; Coux G
    Zygote; 2015 Apr; 23(2):257-65. PubMed ID: 24229731
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lidocaine inhibits choline uptake and phosphatidylcholine biosynthesis in human leukemic monocyte-like U937 cells.
    Chu AJ; Lee JM
    Cell Biochem Funct; 1994 Jun; 12(2):89-98. PubMed ID: 8044894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.