BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 15147898)

  • 1. Complementation of Saccharomyces cerevisiae ccc2 mutant by a putative P1B-ATPase from Brassica napus supports a copper-transporting function.
    Southron JL; Basu U; Taylor GJ
    FEBS Lett; 2004 May; 566(1-3):218-22. PubMed ID: 15147898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional assessment of the carboxy-terminus of the Wilson disease copper-transporting ATPase, ATP7B.
    Hsi G; Cullen LM; Moira Glerum D; Cox DW
    Genomics; 2004 Mar; 83(3):473-81. PubMed ID: 14962673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional characterization of missense mutations in ATP7B: Wilson disease mutation or normal variant?
    Forbes JR; Cox DW
    Am J Hum Genet; 1998 Dec; 63(6):1663-74. PubMed ID: 9837819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequence variation in the ATP-binding domain of the Wilson disease transporter, ATP7B, affects copper transport in a yeast model system.
    Hsi G; Cullen LM; Macintyre G; Chen MM; Glerum DM; Cox DW
    Hum Mutat; 2008 Apr; 29(4):491-501. PubMed ID: 18203200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The structure and function of heavy metal transport P1B-ATPases.
    Argüello JM; Eren E; González-Guerrero M
    Biometals; 2007 Jun; 20(3-4):233-48. PubMed ID: 17219055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional characterization of new mutations in Wilson disease gene (ATP7B) using the yeast model.
    Papur OS; Terzioglu O; Koc A
    J Trace Elem Med Biol; 2015; 31():33-6. PubMed ID: 26004889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of functional domains of Wilson disease protein (ATP7B) in Saccharomyces cerevisiae.
    Iida M; Terada K; Sambongi Y; Wakabayashi T; Miura N; Koyama K; Futai M; Sugiyama T
    FEBS Lett; 1998 May; 428(3):281-5. PubMed ID: 9654149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deletion of the copper transporter CaCCC2 reveals two distinct pathways for iron acquisition in Candida albicans.
    Weissman Z; Shemer R; Kornitzer D
    Mol Microbiol; 2002 Jun; 44(6):1551-60. PubMed ID: 12067343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequence, mapping and disruption of CCC2, a gene that cross-complements the Ca(2+)-sensitive phenotype of csg1 mutants and encodes a P-type ATPase belonging to the Cu(2+)-ATPase subfamily.
    Fu D; Beeler TJ; Dunn TM
    Yeast; 1995 Mar; 11(3):283-92. PubMed ID: 7785328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atx1-like chaperones and their cognate P-type ATPases: copper-binding and transfer.
    Singleton C; Le Brun NE
    Biometals; 2007 Jun; 20(3-4):275-89. PubMed ID: 17225061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Purification and functional reconstitution of the human Wilson copper ATPase, ATP7B.
    Portmann R; Solioz M
    FEBS Lett; 2005 Jul; 579(17):3589-95. PubMed ID: 15963506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A mutational study in the transmembrane domain of Ccc2p, the yeast Cu(I)-ATPase, shows different roles for each Cys-Pro-Cys cysteine.
    Lowe J; Vieyra A; Catty P; Guillain F; Mintz E; Cuillel M
    J Biol Chem; 2004 Jun; 279(25):25986-94. PubMed ID: 15078884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. clap1, a gene encoding a copper-transporting ATPase involved in the process of infection by the phytopathogenic fungus Colletotrichum lindemuthianum.
    Parisot D; Dufresne M; Veneault C; Laugé R; Langin T
    Mol Genet Genomics; 2002 Oct; 268(2):139-51. PubMed ID: 12395188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single amino acid substitution in the putative transmembrane helix V in KdpB of the KdpFABC complex of Escherichia coli uncouples ATPase activity and ion transport.
    Bramkamp M; Altendorf K
    Biochemistry; 2005 Jun; 44(23):8260-6. PubMed ID: 15938615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Arabidopsis heavy metal P-type ATPase HMA5 interacts with metallochaperones and functions in copper detoxification of roots.
    Andrés-Colás N; Sancenón V; Rodríguez-Navarro S; Mayo S; Thiele DJ; Ecker JR; Puig S; Peñarrubia L
    Plant J; 2006 Jan; 45(2):225-36. PubMed ID: 16367966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport of cisplatin by the copper efflux transporter ATP7B.
    Safaei R; Otani S; Larson BJ; Rasmussen ML; Howell SB
    Mol Pharmacol; 2008 Feb; 73(2):461-8. PubMed ID: 17978167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ferrous binding to the multicopper oxidases Saccharomyces cerevisiae Fet3p and human ceruloplasmin: contributions to ferroxidase activity.
    Quintanar L; Gebhard M; Wang TP; Kosman DJ; Solomon EI
    J Am Chem Soc; 2004 Jun; 126(21):6579-89. PubMed ID: 15161286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Structure and function of heavy metal transporter P(1B)-ATPase in plant: a review].
    Zhang Y; Zhang Y; Sun T; Chai T
    Sheng Wu Gong Cheng Xue Bao; 2010 Jun; 26(6):715-25. PubMed ID: 20815250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Restriction of copper export in Saccharomyces cerevisiae to a late Golgi or post-Golgi compartment in the secretory pathway.
    Yuan DS; Dancis A; Klausner RD
    J Biol Chem; 1997 Oct; 272(41):25787-93. PubMed ID: 9325307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A putative P-type Cu(2+)-transporting ATPase gene on chromosome II of Saccharomyces cerevisiae.
    Rad MR; Kirchrath L; Hollenberg CP
    Yeast; 1994 Sep; 10(9):1217-25. PubMed ID: 7754711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.