These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 15147909)

  • 1. Cytosol-derived proteins are sufficient for Arp2/3 recruitment and ARF/coatomer-dependent actin polymerization on Golgi membranes.
    Chen JL; Lacomis L; Erdjument-Bromage H; Tempst P; Stamnes M
    FEBS Lett; 2004 May; 566(1-3):281-6. PubMed ID: 15147909
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro reconstitution of ARF-regulated cytoskeletal dynamics on Golgi membranes.
    Chen JL; Xu W; Stamnes M
    Methods Enzymol; 2005; 404():345-58. PubMed ID: 16413281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple and stepwise interactions between coatomer and ADP-ribosylation factor-1 (Arf1)-GTP.
    Sun Z; Anderl F; Fröhlich K; Zhao L; Hanke S; Brügger B; Wieland F; Béthune J
    Traffic; 2007 May; 8(5):582-93. PubMed ID: 17451557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coatomer-bound Cdc42 regulates dynein recruitment to COPI vesicles.
    Chen JL; Fucini RV; Lacomis L; Erdjument-Bromage H; Tempst P; Stamnes M
    J Cell Biol; 2005 May; 169(3):383-9. PubMed ID: 15866890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Association of Cdc42/N-WASP/Arp2/3 signaling pathway with Golgi membranes.
    Matas OB; Martínez-Menárguez JA; Egea G
    Traffic; 2004 Nov; 5(11):838-46. PubMed ID: 15479449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissection of COPI and Arf1 dynamics in vivo and role in Golgi membrane transport.
    Presley JF; Ward TH; Pfeifer AC; Siggia ED; Phair RD; Lippincott-Schwartz J
    Nature; 2002 May; 417(6885):187-93. PubMed ID: 12000962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Golgi-localized GAP for Cdc42 functions downstream of ARF1 to control Arp2/3 complex and F-actin dynamics.
    Dubois T; Paléotti O; Mironov AA; Fraisier V; Stradal TE; De Matteis MA; Franco M; Chavrier P
    Nat Cell Biol; 2005 Apr; 7(4):353-64. PubMed ID: 15793564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ArfGAP1 dynamics and its role in COPI coat assembly on Golgi membranes of living cells.
    Liu W; Duden R; Phair RD; Lippincott-Schwartz J
    J Cell Biol; 2005 Mar; 168(7):1053-63. PubMed ID: 15795316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ARF1-mediated actin polymerization produces movement of artificial vesicles.
    Heuvingh J; Franco M; Chavrier P; Sykes C
    Proc Natl Acad Sci U S A; 2007 Oct; 104(43):16928-33. PubMed ID: 17942688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A structure-based mechanism for Arf1-dependent recruitment of coatomer to membranes.
    Yu X; Breitman M; Goldberg J
    Cell; 2012 Feb; 148(3):530-42. PubMed ID: 22304919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of GTP hydrolysis on ADP-ribosylation factor-1 at the Golgi membrane.
    Szafer E; Rotman M; Cassel D
    J Biol Chem; 2001 Dec; 276(51):47834-9. PubMed ID: 11592960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel neural Wiskott-Aldrich syndrome protein (N-WASP) binding protein, WISH, induces Arp2/3 complex activation independent of Cdc42.
    Fukuoka M; Suetsugu S; Miki H; Fukami K; Endo T; Takenawa T
    J Cell Biol; 2001 Feb; 152(3):471-82. PubMed ID: 11157975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding of coatomer to Golgi membranes requires ADP-ribosylation factor.
    Palmer DJ; Helms JB; Beckers CJ; Orci L; Rothman JE
    J Biol Chem; 1993 Jun; 268(16):12083-9. PubMed ID: 8505331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ARF1-regulated coatomer directs the steady-state localization of protein kinase C epsilon at the Golgi apparatus.
    Peterson TA; Stamnes M
    Biochim Biophys Acta; 2013 Mar; 1833(3):487-93. PubMed ID: 23195223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ARFGAP1 plays a central role in coupling COPI cargo sorting with vesicle formation.
    Lee SY; Yang JS; Hong W; Premont RT; Hsu VW
    J Cell Biol; 2005 Jan; 168(2):281-90. PubMed ID: 15657398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation by Cdc42 and PIP(2) of Wiskott-Aldrich syndrome protein (WASp) stimulates actin nucleation by Arp2/3 complex.
    Higgs HN; Pollard TD
    J Cell Biol; 2000 Sep; 150(6):1311-20. PubMed ID: 10995437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ADP-ribosylation factor-1 is sensitive to N-ethylmaleimide.
    Yamaguchi T; Nakayama K; Hatsuzawa K; Tani K; Himeno M; Tagaya M
    J Biochem; 1998 Dec; 124(6):1229-36. PubMed ID: 9832629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of protein kinase A activity on the association of ADP-ribosylation factor 1 to golgi membranes.
    Martin ME; Hidalgo J; Rosa JL; Crottet P; Velasco A
    J Biol Chem; 2000 Jun; 275(25):19050-9. PubMed ID: 10858454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of another actin-related protein (Arp) 2/3 complex binding site in neural Wiskott-Aldrich syndrome protein (N-WASP) that complements actin polymerization induced by the Arp2/3 complex activating (VCA) domain of N-WASP.
    Suetsugu S; Miki H; Takenawa T
    J Biol Chem; 2001 Aug; 276(35):33175-80. PubMed ID: 11432863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Small GTP-binding protein TC10 differentially regulates two distinct populations of filamentous actin in 3T3L1 adipocytes.
    Kanzaki M; Watson RT; Hou JC; Stamnes M; Saltiel AR; Pessin JE
    Mol Biol Cell; 2002 Jul; 13(7):2334-46. PubMed ID: 12134073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.