BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 15147967)

  • 1. Vital roles of an interhelical insertion in catalase-peroxidase bifunctionality.
    Li Y; Goodwin DC
    Biochem Biophys Res Commun; 2004 Jun; 318(4):970-6. PubMed ID: 15147967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distal site aspartate is essential in the catalase activity of catalase-peroxidases.
    Jakopitsch C; Auer M; Regelsberger G; Jantschko W; Furtmüller PG; Rüker F; Obinger C
    Biochemistry; 2003 May; 42(18):5292-300. PubMed ID: 12731870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing the peroxidatic activity of KatG by deletion mutagenesis.
    Kudalkar SN; Campbell RA; Li Y; Varnado CL; Prescott C; Goodwin DC
    J Inorg Biochem; 2012 Nov; 116():106-15. PubMed ID: 23018273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational differences in Mycobacterium tuberculosis catalase-peroxidase KatG and its S315T mutant revealed by resonance Raman spectroscopy.
    Kapetanaki S; Chouchane S; Girotto S; Yu S; Magliozzo RS; Schelvis JP
    Biochemistry; 2003 Apr; 42(13):3835-45. PubMed ID: 12667074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mycobacterium tuberculosis KatG(S315T) catalase-peroxidase retains all active site properties for proper catalytic function.
    Kapetanaki SM; Chouchane S; Yu S; Zhao X; Magliozzo RS; Schelvis JP
    Biochemistry; 2005 Jan; 44(1):243-52. PubMed ID: 15628865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalase-peroxidase active site restructuring by a distant and "inactive" domain.
    Baker RD; Cook CO; Goodwin DC
    Biochemistry; 2006 Jun; 45(23):7113-21. PubMed ID: 16752901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substitution of strictly conserved Y111 in catalase-peroxidases: Impact of remote interdomain contacts on active site structure and catalytic performance.
    Moore RL; Cook CO; Williams R; Goodwin DC
    J Inorg Biochem; 2008 Sep; 102(9):1819-24. PubMed ID: 18635265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison between catalase-peroxidase and cytochrome c peroxidase. The role of the hydrogen-bond networks for protein stability and catalysis.
    Santoni E; Jakopitsch C; Obinger C; Smulevich G
    Biochemistry; 2004 May; 43(19):5792-802. PubMed ID: 15134453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutual synergy between catalase and peroxidase activities of the bifunctional enzyme KatG is facilitated by electron hole-hopping within the enzyme.
    Njuma OJ; Davis I; Ndontsa EN; Krewall JR; Liu A; Goodwin DC
    J Biol Chem; 2017 Nov; 292(45):18408-18421. PubMed ID: 28972181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Properties of catalase-peroxidase lacking its C-terminal domain.
    Baker RD; Cook CO; Goodwin DC
    Biochem Biophys Res Commun; 2004 Jul; 320(3):833-9. PubMed ID: 15240123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalase-peroxidase from synechocystis is capable of chlorination and bromination reactions.
    Jakopitsch C; Regelsberger G; Furtmüller PG; Rüker F; Peschek GA; Obinger C
    Biochem Biophys Res Commun; 2001 Sep; 287(3):682-7. PubMed ID: 11563849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox thermodynamics of the ferric-ferrous couple of wild-type synechocystis KatG and KatG(Y249F).
    Bellei M; Jakopitsch C; Battistuzzi G; Sola M; Obinger C
    Biochemistry; 2006 Apr; 45(15):4768-74. PubMed ID: 16605245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectral and kinetic studies of the oxidation of monosubstituted phenols and anilines by recombinant Synechocystis catalase-peroxidase compound I.
    Regelsberger G; Jakopitsch C; Engleder M; Rüker F; Peschek GA; Obinger C
    Biochemistry; 1999 Aug; 38(32):10480-8. PubMed ID: 10441144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two alternative substrate paths for compound I formation and reduction in catalase-peroxidase KatG from Burkholderia pseudomallei.
    Deemagarn T; Wiseman B; Carpena X; Ivancich A; Fita I; Loewen PC
    Proteins; 2007 Jan; 66(1):219-28. PubMed ID: 17063492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing the structure and bifunctionality of catalase-peroxidase (KatG).
    Smulevich G; Jakopitsch C; Droghetti E; Obinger C
    J Inorg Biochem; 2006 Apr; 100(4):568-85. PubMed ID: 16516299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular engineering of myoglobin: influence of residue 68 on the rate and the enantioselectivity of oxidation reactions catalyzed by H64D/V68X myoglobin.
    Yang HJ; Matsui T; Ozaki S; Kato S; Ueno T; Phillips GN; Fukuzumi S; Watanabe Y
    Biochemistry; 2003 Sep; 42(34):10174-81. PubMed ID: 12939145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-function study of the amino-terminal stretch of the catalase subunit molecule in oligomerization, heme binding, and activity expression.
    Ueda M; Kinoshita H; Maeda SI; Zou W; Tanaka A
    Appl Microbiol Biotechnol; 2003 Jun; 61(5-6):488-94. PubMed ID: 12764563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of a large subunit catalase truncated by proteolytic cleavage.
    Chelikani P; Carpena X; Perez-Luque R; Donald LJ; Duckworth HW; Switala J; Fita I; Loewen PC
    Biochemistry; 2005 Apr; 44(15):5597-605. PubMed ID: 15823018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Addition of veratryl alcohol oxidase activity to manganese peroxidase by site-directed mutagenesis.
    Timofeevski SL; Nie G; Reading NS; Aust SD
    Biochem Biophys Res Commun; 1999 Mar; 256(3):500-4. PubMed ID: 10080927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disruption of the H-bond network in the main access channel of catalase-peroxidase modulates enthalpy and entropy of Fe(III) reduction.
    Vlasits J; Bellei M; Jakopitsch C; De Rienzo F; Furtmüller PG; Zamocky M; Sola M; Battistuzzi G; Obinger C
    J Inorg Biochem; 2010 Jun; 104(6):648-56. PubMed ID: 20347488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.