BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 1514805)

  • 1. Response surface analysis of the effects of pH and dilution rate on Ruminococcus flavefaciens FD-1 in cellulose-fed continuous culture.
    Shi Y; Weimer PJ
    Appl Environ Microbiol; 1992 Aug; 58(8):2583-91. PubMed ID: 1514805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of dilution rate and pH on the ruminal cellulolytic bacterium Fibrobacter succinogenes S85 in cellulose-fed continuous culture.
    Weimer PJ
    Arch Microbiol; 1993; 160(4):288-94. PubMed ID: 8239881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Competition for cellulose among three predominant ruminal cellulolytic bacteria under substrate-excess and substrate-limited conditions.
    Shi Y; Odt CL; Weimer PJ
    Appl Environ Microbiol; 1997 Feb; 63(2):734-42. PubMed ID: 9023950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The use of 16S rRNA-targeted oligonucleotide probes to study competition between ruminal fibrolytic bacteria: pure-culture studies with cellulose and alkaline peroxide-treated wheat straw.
    Odenyo AA; Mackie RI; Stahl DA; White BA
    Appl Environ Microbiol; 1994 Oct; 60(10):3697-703. PubMed ID: 7527202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of formate and hydrogen, and flux of reducing equivalents and carbon in Ruminococcus flavefaciens FD-1.
    Shi Y; Weimer PJ; Ralph J
    Antonie Van Leeuwenhoek; 1997 Aug; 72(2):101-9. PubMed ID: 9298188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Utilization of individual cellodextrins by three predominant ruminal cellulolytic bacteria.
    Shi Y; Weimer PJ
    Appl Environ Microbiol; 1996 Mar; 62(3):1084-8. PubMed ID: 8975600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellobiose versus glucose utilization by the ruminal bacterium Ruminococcus albus.
    Thurston B; Dawson KA; Strobel HJ
    Appl Environ Microbiol; 1993 Aug; 59(8):2631-7. PubMed ID: 8368849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic flux in cellulose batch and cellulose-fed continuous cultures of Clostridium cellulolyticum in response to acidic environment.
    Desvaux M; Guedon E; Petitdemange H
    Microbiology (Reading); 2001 Jun; 147(Pt 6):1461-1471. PubMed ID: 11390677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of ruminal cellulose fermentation by extracts of the perennial legume cicer milkvetch (Astragalus cicer).
    Weimer PJ; Hatfield RD; Buxton DR
    Appl Environ Microbiol; 1993 Feb; 59(2):405-9. PubMed ID: 8434909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of caproic acid by cocultures of ruminal cellulolytic bacteria and Clostridium kluyveri grown on cellulose and ethanol.
    Kenealy WR; Cao Y; Weimer PJ
    Appl Microbiol Biotechnol; 1995 Dec; 44(3-4):507-13. PubMed ID: 8597554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions between Fibrobacter succinogenes, Prevotella ruminicola, and Ruminococcus flavefaciens in the digestion of cellulose from forages.
    Fondevila M; Dehority BA
    J Anim Sci; 1996 Mar; 74(3):678-84. PubMed ID: 8707727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of soluble carbohydrates on digestion of cellulose by pure cultures of rumen bacteria.
    Hiltner P; Dehority BA
    Appl Environ Microbiol; 1983 Sep; 46(3):642-8. PubMed ID: 6639018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Response to various amounts of Aspergillus oryzae fermentation extract on ruminal metabolism in cattle.
    Varel VH; Kreikemeier KK
    J Dairy Sci; 1994 Oct; 77(10):3081-6. PubMed ID: 7836596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of the cellulolytic activity of Neocallimastix frontalis by Ruminococcus flavefaciens.
    Bernalier A; Fonty G; Bonnemoy F; Gouet P
    J Gen Microbiol; 1993 Apr; 139(4):873-80. PubMed ID: 8515242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of 16S rRNA-targeted oligonucleotide probes to study competition between ruminal fibrolytic bacteria: development of probes for Ruminococcus species and evidence for bacteriocin production.
    Odenyo AA; Mackie RI; Stahl DA; White BA
    Appl Environ Microbiol; 1994 Oct; 60(10):3688-96. PubMed ID: 7527201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interspecies H2 transfer in cellulose degradation between fibrolytic bacteria and H2-utilizing microorganisms from the human colon.
    Robert C; Del'Homme C; Bernalier-Donadille A
    FEMS Microbiol Lett; 2001 Dec; 205(2):209-14. PubMed ID: 11750804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification and properties of NADP-dependent glutamate dehydrogenase from Ruminococcus flavefaciens FD-1.
    Duncan PA; White BA; Mackie RI
    Appl Environ Microbiol; 1992 Dec; 58(12):4032-7. PubMed ID: 1335719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sporulation of Clostridium cellulolyticum while grown in cellulose-batch and cellulose-fed continuous cultures on a mineral-salt based medium.
    Desvaux M; Petitdemange H
    Microb Ecol; 2002 Mar; 43(2):271-9. PubMed ID: 12023734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies on growth and metabolism of Oenococcus oeni on sugars and sugar mixtures.
    Zhang DS; Lovitt RW
    J Appl Microbiol; 2005; 99(3):565-72. PubMed ID: 16108798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Competition among three predominant ruminal cellulolytic bacteria in the absence or presence of non-cellulolytic bacteria.
    Chen J; Weimer P
    Microbiology (Reading); 2001 Jan; 147(Pt 1):21-30. PubMed ID: 11160797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.