These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 1514805)

  • 21. Initial pH as a determinant of cellulose digestion rate by mixed ruminal microorganisms in vitro.
    Mouriño F; Akkarawongsa R; Weimer PJ
    J Dairy Sci; 2001 Apr; 84(4):848-59. PubMed ID: 11352162
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kinetics and metabolism of cellulose degradation at high substrate concentrations in steady-state continuous cultures of Clostridium cellulolyticum on a chemically defined medium.
    Desvaux M; Guedon E; Petitdemange H
    Appl Environ Microbiol; 2001 Sep; 67(9):3837-45. PubMed ID: 11525975
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Differential fermentation of cellulose allomorphs by ruminal cellulolytic bacteria.
    Weimer PJ; French AD; Calamari TA
    Appl Environ Microbiol; 1991 Nov; 57(11):3101-6. PubMed ID: 16348578
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The characteristics of a new non-spore-forming cellulolytic mesophilic anaerobe strain CM126 isolated from municipal sewage sludge.
    Nitisinprasert S; Temmes A
    J Appl Bacteriol; 1991 Aug; 71(2):154-61. PubMed ID: 1917724
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cellobiose and cellodextrin metabolism by the ruminal bacterium Ruminococcus albus.
    Lou J; Dawson KA; Strobel HJ
    Curr Microbiol; 1997 Oct; 35(4):221-7. PubMed ID: 9290062
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fermentation of cellulose by Ruminococcus flavefaciens in the presence and absence of Methanobacterium ruminantium.
    Latham MJ; Wolin MJ
    Appl Environ Microbiol; 1977 Sep; 34(3):297-301. PubMed ID: 562131
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of a Saccharomyces cerevisiae culture on ruminal bacteria that utilize lactate and digest cellulose.
    Callaway ES; Martin SA
    J Dairy Sci; 1997 Sep; 80(9):2035-44. PubMed ID: 9313145
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Magnesium requirement of some of the principal rumen cellulolytic bacteria.
    Morales MS; Dehority BA
    Animal; 2014 Sep; 8(9):1427-32. PubMed ID: 24846132
    [TBL] [Abstract][Full Text] [Related]  

  • 29. EndB, a multidomain family 44 cellulase from Ruminococcus flavefaciens 17, binds to cellulose via a novel cellulose-binding module and to another R. flavefaciens protein via a dockerin domain.
    Rincón MT; McCrae SI; Kirby J; Scott KP; Flint HJ
    Appl Environ Microbiol; 2001 Oct; 67(10):4426-31. PubMed ID: 11571138
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ionized calcium requirement of rumen cellulolytic bacteria.
    Morales MS; Dehority BA
    J Dairy Sci; 2009 Oct; 92(10):5079-91. PubMed ID: 19762826
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kinetics of Insoluble Cellulose Fermentation by Continuous Cultures of Ruminococcus albus.
    Pavlostathis SG; Miller TL; Wolin MJ
    Appl Environ Microbiol; 1988 Nov; 54(11):2660-3. PubMed ID: 16347770
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differential protein phosphorylation-dephosphorylation in response to carbon source in Ruminococcus flavefaciens FD-1.
    Vercoe PE; Kocherginskaya SA; White BA
    J Appl Microbiol; 2003; 94(6):974-80. PubMed ID: 12752804
    [TBL] [Abstract][Full Text] [Related]  

  • 33. DEGRADATION AND UTILIZATION OF ISOLATED HEMICELLULOSE BY PURE CULTURES OF CELLULOLYTIC RUMEN BACTERIA.
    DEHORITY BA
    J Bacteriol; 1965 Jun; 89(6):1515-20. PubMed ID: 14291590
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transcriptional regulation of an endoglucanase and a cellodextrinase gene in Ruminococcus flavefaciens FD-1.
    Wang W; Reid SJ; Thomson JA
    J Gen Microbiol; 1993 Jun; 139 Pt 6():1219-26. PubMed ID: 8360615
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Degradation and utilization of forage hemicellulose by rumen bacteria, singly in coculture or added sequentially.
    Fondevila M; Dehority BA
    J Appl Bacteriol; 1994 Nov; 77(5):541-8. PubMed ID: 8002478
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Why are ruminal cellulolytic bacteria unable to digest cellulose at low pH?
    Russell JB; Wilson DB
    J Dairy Sci; 1996 Aug; 79(8):1503-9. PubMed ID: 8880476
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Why don't ruminal bacteria digest cellulose faster?
    Weimer PJ
    J Dairy Sci; 1996 Aug; 79(8):1496-502. PubMed ID: 8880475
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Degradation of wheat straw and alkaline hydrogen peroxide-treated wheat straw by Ruminococcus albus 8 and Ruminococcus flavefaciens FD-1.
    Odenyo AA; Mackie RI; Fahey GC; White BA
    J Anim Sci; 1991 Feb; 69(2):819-26. PubMed ID: 2016208
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Carbohydrate metabolism by Actinomyces viscosus growing in continuous culture.
    Hamilton IR; Ellwood DC
    Infect Immun; 1983 Oct; 42(1):19-26. PubMed ID: 6618664
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of ruminal cellulolytic bacterial concentrations on in situ digestion of forage cellulose.
    Dehority BA; Tirabasso PA
    J Anim Sci; 1998 Nov; 76(11):2905-11. PubMed ID: 9856401
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.