These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 15148391)

  • 61. Role of trimer-trimer interaction of bacteriorhodopsin studied by optical spectroscopy and high-speed atomic force microscopy.
    Yamashita H; Inoue K; Shibata M; Uchihashi T; Sasaki J; Kandori H; Ando T
    J Struct Biol; 2013 Oct; 184(1):2-11. PubMed ID: 23462099
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Remarkably enhanced photoelectrical efficiency of bacteriorhodopsin in quantum dot - Purple membrane complexes under two-photon excitation.
    Krivenkov V; Samokhvalov P; Nabiev I
    Biosens Bioelectron; 2019 Jul; 137():117-122. PubMed ID: 31085400
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Long-range effects on the retinal chromophore of bacteriorhodopsin caused by surface carboxyl group modification.
    Renthal R; McMillan K; Guerra L; Garcia MN; Rangel R; Jen CM
    Biochemistry; 1995 Jun; 34(24):7869-78. PubMed ID: 7794898
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Lipid-induced conformational changes of an integral membrane protein: an infrared spectroscopic study of the effects of Triton X-100 treatment on the purple membrane of Halobacterium halobium ET1001.
    Barnett SM; Dracheva S; Hendler R; Levin IW
    Biochemistry; 1996 Apr; 35(14):4558-67. PubMed ID: 8605206
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Dynamical heterogeneity of specific amino acids in bacteriorhodopsin.
    Wood K; Grudinin S; Kessler B; Weik M; Johnson M; Kneller GR; Oesterhelt D; Zaccai G
    J Mol Biol; 2008 Jul; 380(3):581-91. PubMed ID: 18565346
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Heterogeneity effects in the binding of all-trans retinal to bacterio-opsin.
    Friedman N; Ottolenghi M; Sheves M
    Biochemistry; 2003 Sep; 42(38):11281-8. PubMed ID: 14503878
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Molecular dynamics study of the 13-cis form (bR548) of bacteriorhodopsin and its photocycle.
    Logunov I; Humphrey W; Schulten K; Sheves M
    Biophys J; 1995 Apr; 68(4):1270-82. PubMed ID: 7787017
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Effect of beta-particles on the retinal chromophore in bacteriorhodopsin of Halobacterium salinarium.
    Mostafa HI
    Radiat Meas; 2004 Apr; 38(2):217-25. PubMed ID: 14968783
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Direct observation of the coherent nuclear response after the absorption of a photon.
    Liebel M; Schnedermann C; Bassolino G; Taylor G; Watts A; Kukura P
    Phys Rev Lett; 2014 Jun; 112(23):238301. PubMed ID: 24972232
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Femtosecond primary events in bacteriorhodopsin and its retinal modified analogs: revision of commonly accepted interpretation of electronic spectra of transient intermediates in the bacteriorhodopsin photocycle.
    Abramczyk H
    J Chem Phys; 2004 Jun; 120(23):11120-32. PubMed ID: 15268142
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The photoisomerization of retinal in bacteriorhodospin: experimental evidence for a three-state model.
    Hasson KC; Gai F; Anfinrud PA
    Proc Natl Acad Sci U S A; 1996 Dec; 93(26):15124-9. PubMed ID: 8986774
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Met-145 is a key residue in the dark adaptation of bacteriorhodopsin homologs.
    Ihara K; Amemiya T; Miyashita Y; Mukohata Y
    Biophys J; 1994 Sep; 67(3):1187-91. PubMed ID: 7811932
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Direct, label-free, selective, and sensitive microbial detection using a bacteriorhodopsin-based photoelectric immunosensor.
    Chen HM; Jheng KR; Yu AD
    Biosens Bioelectron; 2017 May; 91():24-31. PubMed ID: 27987407
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Analysis of femtosecond stimulated Raman spectroscopy of excited-state evolution in bacteriorhodopsin.
    Niu K; Zhao B; Sun Z; Lee SY
    J Chem Phys; 2010 Feb; 132(8):084510. PubMed ID: 20192310
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Structure and function in bacteriorhodopsin: the role of the interhelical loops in the folding and stability of bacteriorhodopsin.
    Kim JM; Booth PJ; Allen SJ; Khorana HG
    J Mol Biol; 2001 Apr; 308(2):409-22. PubMed ID: 11327776
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Crystallization in lipidic cubic phases: a case study with bacteriorhodopsin.
    Gordeliy VI; Schlesinger R; Efremov R; Büldt G; Heberle J
    Methods Mol Biol; 2003; 228():305-16. PubMed ID: 12824562
    [No Abstract]   [Full Text] [Related]  

  • 77. The final stages of folding of the membrane protein bacteriorhodopsin occur by kinetically indistinguishable parallel folding paths that are mediated by pH.
    Lu H; Booth PJ
    J Mol Biol; 2000 May; 299(1):233-43. PubMed ID: 10860735
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Structural changes of purple membrane and bacteriorhodopsin during its denaturation induced by high pH.
    Li H; Chen DL; Zhong S; Xu B; Han BS; Hu KS
    J Phys Chem B; 2005 Jun; 109(22):11273-8. PubMed ID: 16852376
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Comparative Femtosecond Spectroscopy of Primary Photoreactions of
    Smitienko OA; Feldman TB; Petrovskaya LE; Nekrasova OV; Yakovleva MA; Shelaev IV; Gostev FE; Cherepanov DA; Kolchugina IB; Dolgikh DA; Nadtochenko VA; Kirpichnikov MP; Ostrovsky MA
    J Phys Chem B; 2021 Feb; 125(4):995-1008. PubMed ID: 33475375
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Infrared monitoring of interlayer water in stacks of purple membranes.
    Dioumaev AK; Lanyi JK
    Photochem Photobiol; 2009; 85(2):598-608. PubMed ID: 19192202
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.