BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 15148394)

  • 1. Membrane growth can generate a transmembrane pH gradient in fatty acid vesicles.
    Chen IA; Szostak JW
    Proc Natl Acad Sci U S A; 2004 May; 101(21):7965-70. PubMed ID: 15148394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A kinetic study of the growth of fatty acid vesicles.
    Chen IA; Szostak JW
    Biophys J; 2004 Aug; 87(2):988-98. PubMed ID: 15298905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ca(2+)-induced fusion of phospholipid vesicles containing free fatty acids: modulation by transmembrane pH gradients.
    Wilschut J; Scholma J; Eastman SJ; Hope MJ; Cullis PR
    Biochemistry; 1992 Mar; 31(10):2629-36. PubMed ID: 1547206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fatty Acid Fueled Transmembrane Chloride Transport.
    Howe ENW; Gale PA
    J Am Chem Soc; 2019 Jul; 141(27):10654-10660. PubMed ID: 31244178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic studies of the interaction of fatty acids with phosphatidylcholine vesicles (liposomes).
    Rogerson ML; Robinson BH; Bucak S; Walde P
    Colloids Surf B Biointerfaces; 2006 Mar; 48(1):24-34. PubMed ID: 16466910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Basic amino acid transport in plasma membrane vesicles of Penicillium chrysogenum.
    Hillenga DJ; Versantvoort HJ; Driessen AJ; Konings WN
    J Bacteriol; 1996 Jul; 178(14):3991-5. PubMed ID: 8763922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of osmotic volumes and pH gradients of plant membrane and lipid vesicles using ESR spectroscopy.
    Lomax TL; Mehlhorn RJ
    Biochim Biophys Acta; 1985 Nov; 821(1):106-14. PubMed ID: 2998461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A quantitative model for using acridine orange as a transmembrane pH gradient probe.
    Clerc S; Barenholz Y
    Anal Biochem; 1998 May; 259(1):104-11. PubMed ID: 9606150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlled growth of filamentous fatty acid vesicles under flow.
    Hentrich C; Szostak JW
    Langmuir; 2014 Dec; 30(49):14916-25. PubMed ID: 25402759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipid asymmetry induced by transmembrane pH gradients in large unilamellar vesicles.
    Hope MJ; Cullis PR
    J Biol Chem; 1987 Mar; 262(9):4360-6. PubMed ID: 3558410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA catalysis in model protocell vesicles.
    Chen IA; Salehi-Ashtiani K; Szostak JW
    J Am Chem Soc; 2005 Sep; 127(38):13213-9. PubMed ID: 16173749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intervesicular exchange of lipids with weak acid and weak base characteristics: influence of transmembrane pH gradients.
    Eastman SJ; Wilschut J; Cullis PR; Hope MJ
    Biochim Biophys Acta; 1989 Jun; 981(2):178-84. PubMed ID: 2730899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anomalous diffusion of fatty acid vesicles driven by adhesion gradients.
    Hatta E
    J Phys Chem B; 2008 Jul; 112(29):8571-7. PubMed ID: 18582101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proton flux in large unilamellar vesicles in response to membrane potentials and pH gradients.
    Redelmeier TE; Mayer LD; Wong KF; Bally MB; Cullis PR
    Biophys J; 1989 Aug; 56(2):385-93. PubMed ID: 2775833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupled growth and division of model protocell membranes.
    Zhu TF; Szostak JW
    J Am Chem Soc; 2009 Apr; 131(15):5705-13. PubMed ID: 19323552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Life in acid: pH homeostasis in acidophiles.
    Baker-Austin C; Dopson M
    Trends Microbiol; 2007 Apr; 15(4):165-71. PubMed ID: 17331729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fatty acids are rapidly delivered to and extracted from membranes by methyl-beta-cyclodextrin.
    Brunaldi K; Huang N; Hamilton JA
    J Lipid Res; 2010 Jan; 51(1):120-31. PubMed ID: 19625735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural effects and lipid membrane interactions of the pH-responsive GALA peptide with fatty acid acylation.
    Lin BF; Missirlis D; Krogstad DV; Tirrell M
    Biochemistry; 2012 Jun; 51(23):4658-68. PubMed ID: 22591394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The ability of acidic pH, growth inhibitors, and glucose to increase the proton motive force and energy spilling of amino acid-fermenting Clostridium sporogenes MD1 cultures.
    Flythe MD; Russell JB
    Arch Microbiol; 2005 May; 183(4):236-42. PubMed ID: 15891933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energetics underlying the process of long-chain fatty acid transport.
    Azizan A; Sherin D; DiRusso CC; Black PN
    Arch Biochem Biophys; 1999 May; 365(2):299-306. PubMed ID: 10328825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.