These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 15149143)

  • 1. Changes in nutrient content of Cirsium arvense (L.) Scop. during the vegetation period.
    Lehoczky E; Nádasy E; Béres I; Kazinczi G
    Commun Agric Appl Biol Sci; 2003; 68(4 Pt A):449-53. PubMed ID: 15149143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Above- and below ground trophic interactions on creeping thistle (Cirsium arvense) in high- and low-diversity plant communities: potential for biotic resistance?
    Bezemer TM; Graça O; Rousseau P; van der Putten WH
    Plant Biol (Stuttg); 2004; 6(2):231-8. PubMed ID: 15045676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Auxin and ABA act as central regulators of developmental networks associated with paradormancy in Canada thistle (Cirsium arvense).
    Anderson JV; Doğramacı M; Horvath DP; Foley ME; Chao WS; Suttle JC; Thimmapuram J; Hernandez AG; Ali S; Mikel MA
    Funct Integr Genomics; 2012 Aug; 12(3):515-31. PubMed ID: 22580957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonenolides and cytochalasins with phytotoxic activity against Cirsium arvense and Sonchus arvensis: a structure-activity relationships study.
    Berestetskiy A; Dmitriev A; Mitina G; Lisker I; Andolfi A; Evidente A
    Phytochemistry; 2008 Feb; 69(4):953-60. PubMed ID: 18155260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anatomical injury induced by the eriophyid mite Aceria anthocoptes on the leaves of Cirsium arvense.
    Rancic D; Stevanovic B; Petanović R; Magud B; Tosevski I; Gassmann A
    Exp Appl Acarol; 2006; 38(4):243-53. PubMed ID: 16612668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crop-weed competition between sunflower (Helianthus annuus L.) and Convolvulus arvensis L. in substitutive experiments.
    Kazinczi G; Takács A; Horváth J
    Commun Agric Appl Biol Sci; 2006; 71(3 Pt A):781-6. PubMed ID: 17390820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of fertilization on the weediness of maize in a long-term field experiment.
    Kismányoky A; Lehoczky E; Kismányoky T
    Commun Agric Appl Biol Sci; 2006; 71(3 Pt A):787-92. PubMed ID: 17390821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Herbicidal potential of stagonolide, a new phytotoxic nonenolide from Stagonospora cirsii.
    Yuzikhin O; Mitina G; Berestetskiy A
    J Agric Food Chem; 2007 Sep; 55(19):7707-11. PubMed ID: 17715893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Invasive Cirsium arvense displays different resource-use strategies along local habitat heterogeneity in the trans-Himalayan region of Ladakh.
    Hakim N; Ahmad M; Rathee S; Sharma P; Kaur S; Batish DR; Singh HP
    Environ Monit Assess; 2023 May; 195(6):730. PubMed ID: 37231282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study on the weediness of winter wheat in a long-term fertilization field experiment.
    Lehoczky E; Kismányoky A; Kismányoky T
    Commun Agric Appl Biol Sci; 2006; 71(3 Pt A):793-6. PubMed ID: 17390822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An epidemiological study of Puccinia punctiformis (Str.) Röhl as a stepping-stone to the biological control of Cirsium arvense (L.) Scop.
    Frantzen J
    New Phytol; 1994 May; 127(1):147-154. PubMed ID: 33874395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparative study of cadmium phytoextraction by accumulator and weed species.
    Ghosh M; Singh SP
    Environ Pollut; 2005 Jan; 133(2):365-71. PubMed ID: 15519467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Occurrence of Ditylenchus weischeri and Not D. dipsaci in Field Pea Harvest Samples and Cirsium arvense in the Canadian Prairies.
    Tenuta M; Madani M; Briar S; Molina O; Gulden R; Subbotin SA
    J Nematol; 2014 Dec; 46(4):376-84. PubMed ID: 25580031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nutrient absorbtion of weeds in maize.
    Lehoczky E; Kismányoky A; Nagy P; Németh T
    Commun Agric Appl Biol Sci; 2008; 73(4):951-7. PubMed ID: 19226848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arbuscular mycorrhizal fungi can decrease the uptake of uranium by subterranean clover grown at high levels of uranium in soil.
    Rufyikiri G; Huysmans L; Wannijn J; Van Hees M; Leyval C; Jakobsen I
    Environ Pollut; 2004 Aug; 130(3):427-36. PubMed ID: 15182973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insect-Transmitted Urediniospores of the Rust Puccinia punctiformis Cause Systemic Infections in Established Cirsium arvense Plants.
    Wandeler H; Bacher S
    Phytopathology; 2006 Aug; 96(8):813-8. PubMed ID: 18943745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nicotine concentration in leaves of flue-cured tobacco plants as affected by removal of the shoot apex and lateral buds.
    Wang SS; Shi QM; Li WQ; Niu JF; Li CJ; Zhang FS
    J Integr Plant Biol; 2008 Aug; 50(8):958-64. PubMed ID: 18713345
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Herbicidal potential of catechol as an allelochemical.
    Topal S; Kocaçalişkan I; Arslan O
    Z Naturforsch C J Biosci; 2006; 61(1-2):69-73. PubMed ID: 16610220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stagonolides G-I and modiolide A, nonenolides produced by Stagonospora cirsii, a potential mycoherbicide for Cirsium arvense.
    Evidente A; Cimmino A; Berestetskiy A; Andolfi A; Motta A
    J Nat Prod; 2008 Nov; 71(11):1897-901. PubMed ID: 18959441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Earthworm expulsion by formalin has severe and lasting side effects on soil biota and plants.
    Eichinger E; Bruckner A; Stemmer M
    Ecotoxicol Environ Saf; 2007 Jun; 67(2):260-6. PubMed ID: 16764928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.